2.2 数据的图形描绘以及处理(QQplot,归一化)

QQplot用于比较两个数据分布的相似性,而数据标准化是数据分析中的重要步骤,可以消除量纲影响。Min-Max Scaling和Z-score normalization是常用的归一化方法,确保特征在同一数量级上,便于比较和处理。通过归一化,数据会被转换到特定区间,如(1, 10),以实现不同特征的可比性。" 129262771,14708418,网络安全技术的开放安全新趋势,"['网络', '安全', '零信任', '入侵容忍', '白盒安全']
摘要由CSDN通过智能技术生成
  1. QQplot

横坐标表示的是属性的其中一个测量值1,纵坐标表示另一个测量值2。散点是分位点。点的横纵坐标是这个测量值1和测量值2的分位点的取值。

from scipy import stats
from matplotlib import pyplot as plt
import statsmodels.api as sm
import numpy as np

# example with the new ProbPlot class
#对比两个不同测试值的分布,而不是看测试值满足什么既定分布
import numpy as np
X = [5.89,49.59,59.98,159,17.99,56.99,82.75,142.19
,31,125.5,4.5,22,52.9,61,33.5,328,128,142.19,229,189.4]
Y= [1.4,1.5,2.2,2.7,3.2,3.9,4.1,4.1,4.6,4.8
,4.9,5.3,5.5,5.8,6.2,8.9,11.6,18,22.9,38.2]
x=np.array(X)
y=np.array(Y)
pp_x = sm.ProbPlot(x, fit=True)
pp_y = sm.ProbPlot(y, fit=True)
fig3 = pp_x.qqplot(other=pp_y, line='45')
plt.show()

2 normalization

  梯度下降的过程曲折,复杂的问题是因为没有同等程度的看待各个特征,即我们没有将各个特征量化到统一的区间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值