Linux五种IO模型浅谈

文件描述符

我们知道Linux的内核将所有外部设备都可以看做一个文件来操作。那么我们对与外部设备的操作都可以看做对文件进行操作。我们对一个文件的读写,都通过调用内核提供的系统调用,内核给我们返回一个文件描述符(file descriptor,简称fd)。我们通过ls -l  /proc/${pid}/fd/ 可以看到进程${pid}占用的所有描述符。而对一个socket的读写也会有相应的描述符,称为socket FD(socket描述符),描述符就是一个数字,指向内核中一个结构体;文件路径,数据区,等一些属性。而我们的应用程序对文件的读写就通过对描述符的读写完成。

文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。 

进程切换

现代多任务系统,通俗点说就是把CPU的时间进行分片了,在特定的时间片内处理一个特定的系统进程(指单核CPU)。就这样,在多个进程之间利用CPU时间分片来回处理就是我们看到的多任务处理。

当然,为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的。从一个进程的运行转到另一个进程上运行,这个过程中经过下面这些变化:

1. 保存处理机上下文,包括程序计数器和其他寄存器。
2. 更新PCB信息。
3. 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
4. 选择另一个进程执行,并更新其PCB。
5. 更新内存管理的数据结构。
6. 恢复处理机上下文。

PS:总而言之进程切换就是很耗资源

缓存IO和直接IO

缓存IO又被称作标准IO,大多数文件系统的默认IO 操作都是缓存IO。在Linux的缓存IO机制中,操作系统会将IO的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。

缓存IO的缺点:

数据在传输过程中需要在应用程序地址空间和内核进行多次数据拷贝操作,这些数据拷贝操作所带来的CPU以及内存开销是非常大的。

系统如何调用I/O操作

系统调用是如何完成一个I/O操作的呢? Linux将内存分为内核区和用户区;Linux内核给我们管理所有的硬件资源,应用程序通过调用系统调用和内核交互,达到使用硬件资源的目的;应用程序通过系统调用read()发起一个读操作,这时候内核创建一个文件描述符,并通过驱动程序向硬件发送读指令,并将读的数据放在这个描述符对应结构体的缓存区。但这个结构体是在内核内存区的。所以需要将这个数据复制一份写入到用户区进程空间内,这样完成了一次读操作。

Linux提供的read/write系统调用,都是一个阻塞函数。这样我们的应用进程在发起read/write系统调用时,就必须阻塞,就进程被挂起(进程睡眠)而等待文件描述符的读就绪。

文件描述符读就绪和写就绪

读就绪:就是这个文件描述符的接收缓冲区中的数据字节数大于等于套接字接收缓冲区低水位标记的当前大小。

写就绪:该描述符发送缓冲区的可用空间字节数大于等于描述符发送缓冲区低水位标记的当前大小(如果是socket fd,说明上一个数据已经发送完成)。

接收低水位标记和发送低水位标记:由应用程序指定,比如应用程序指定接收低水位为64个字节,那么接收缓冲区有64个字节,才算fd读就绪。

有没有办法能让我们在进行Socket I/O操作时,不让我们的应用进程阻塞。于是对高效的处理I/O的需求就越紧迫了。在人们不断探索中,时至今日一见发明了很多种处理I/O问题的方式,从形式上划分的话,可归类为5大模型:阻塞、非阻塞、多路复用、信号驱动和异步I/O(AIO)

再说一下IO发生时涉及的对象和步骤。对于一个网络IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

1.等待数据准备 (Waiting for the data to be ready)

2.将数据从内核拷贝到进程中(Copying the data from the kernel to the process)

记住这两点很重要,因为这些IO模型的区别就是在两个阶段上各有不同的情况。

五种IO模型阐述

目前IO模型主要经历了以下五种:
1)阻塞IO
2)非阻塞IO
3)IO复用(select和poll)
4)信号驱动IO(sigio)
5)异步IO(aio_) 
内核空间和用户空间:
由于操作系统都包括内核空间和用户空间(或者说内核态和用户态),内核空间主要存放的是内核代码和数据,是供系统进程使用的空间。而用户空间主要存放的是用户代码和数据,是供用户进程使用的空间。目前Linux系统简化了分段机制,使得虚拟地址与线性地址总是保持一致,因此,Linux系统的虚拟地址也是0~4G。Linux系统将这4G空间分为了两个部分:将最高的1G空间(从虚拟地址0xC0000000到0xFFFFFFFF)供内核使用,即为“内核空间”,而将较低的3G空间(从虚拟地址 0x00000000到0xBFFFFFFF)供用户进程使用,即为“用户空间”。同时由于每个用户进程都可以通过系统调用进入到内核空间,因此Linux的内核空间可以认为是被所有用户进程所共享的,因此对于一个具体用户进程来说,它可以访问的虚拟内存地址就是0~4G。另外Linux系统分为了四种特权级:0~3,主要是用来保护资源。0级特权最高,而3级则为最低,系统进程主要运行在0级,用户进程主要运行在3级。
 
一般来说,IO操作都分为两个阶段,就拿套接口的输入操作来说,它的两个阶段主要是:
1)等待网络数据到来,当分组到来时,将其拷贝到内核空间的临时缓冲区中
2)将内核空间临时缓冲区中的数据拷贝到用户空间缓冲区中

1、阻塞IO

在Linux中,默认情况下所有的socket都是阻塞,一个典型的读操作流程大概是这样:


说明:任何一个系统调用都会产生一个由用户态到内核态切换,再从内核态到用户态切换的过程,而进程上下文切换是通过系统中断程序来实现的,需要保存当前进程的上下文状态,这是一个极其费力的过程。

当用户进程调用了recvfrom这个系统调用,内核就开始了IO的第一个阶段:准备数据,对于网络IO来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候内核就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当内核一直等到数据准备好了,它就会将数据从内核中拷贝到用户内存(copy socket data from kenel space to user space.),然后内核返回结果,用户进程才解除阻塞的状态,重新运行起来。所以,阻塞式IO的特点就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被阻塞了。

几乎所有的程序员第一次接触到的网络编程都是从listen()、send()、recv() 等接口开始的,这些接口都是阻塞型的。使用这些接口可以很方便的构建服务器/客户机的模型。下面是一个简单地“一问一答”的服务器。

我们注意到,大部分的socket接口都是阻塞型的。所谓阻塞型接口是指系统调用(一般是IO接口)不返回调用结果并让当前线程一直阻塞,只有当该系统调用获得结果或者超时出错时才返回。

实际上,除非特别指定,几乎所有的IO接口 ( 包括socket接口 ) 都是阻塞型的。这给网络编程带来了一个很大的问题,如在调用send()的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或响应任何的网络请求。

一个简单的改进方案是在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。具体使用多进程还是多线程,并没有一个特定的模式。传统意义上,进程的开销要远远大于线程,所以如果需要同时为较多的客户机提供服务,则不推荐使用多进程;如果单个服务执行体需要消耗较多的CPU资源,譬如需要进行大规模或长时间的数据运算或文件访问,则进程较为安全。通常,使用pthread_create ()创建新线程,fork()创建新进程。

我们假设对上述的服务器 / 客户机模型,提出更高的要求,即让服务器同时为多个客户机提供一问一答的服务。那么就会出现这个情况,如果有连接,则创建新线程,并在新线程中提供为前例同样的问答服务。这样一来,多线程的服务器模型似乎完美的解决了为多个客户机提供问答服务的要求,但其实并不尽然。如果要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而线程与进程本身也更容易进入假死状态。

很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。“连接池”维持连接的缓存池,尽量重用已有的连接、减少创建和关闭连接的频率。这两种技术都可以很好的降低系统开销,都被广泛应用很多大型系统,如httpd、websphere、tomcat和各种数据库等。但是,“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。

对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。 

2、非阻塞IO

Linux下,可以通过设置socket使其变为非阻塞式IO。但是由用户进程不停地询问内核某种操作是否准备就绪,这就是我们常说的“轮询”。这同样是一件比较浪费CPU的方式。当对一个非阻塞式IO的socket执行读操作时,流程是这个样子:

从图中可以看出,当用户进程发出read操作时,如果内核中的数据还没有准备好,那么它并不会阻塞用户进程,不要将进程睡眠,而是立刻返回一个error。从用户进程角度讲,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作,一旦内核中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。

所以,在非阻塞式IO中,用户进程其实是需要不断的主动询问内核数据准备好了没有。

非阻塞的接口相比于阻塞型接口的显著差异在于,在被调用之后立即返回。使用如下的函数可以将某句柄fd设为非阻塞状态。

fcntl( fd, F_SETFL, O_NONBLOCK );

就是在I/O请求时加上O_NONBLOCK一类的标志,立刻返回,但第二阶段依然需要工作进程参与库函数把内核空间数据复制到用户空间,第二阶段依旧阻塞。

下面将给出只用一个线程,但能够同时从多个连接中检测数据是否送达,并且接受数据的模型。

 

在非阻塞状态下,recv()接口在被调用后立即返回,返回值代表了不同的含义。如在本例中,

* recv()返回值大于0,表示接受数据完毕,返回值即是接受到的字节数;
* recv()返回0,表示连接已经正常断开;
* recv()返回-1,且errno等于EAGAIN,表示recv操作还没执行完成;
* recv()返回-1,且errno不等于EAGAIN,表示recv操作遇到系统错误errno;

可以看到服务器线程可以通过循环调用recv()接口,可以在单个线程内实现对所有连接的数据接收工作。但是上述模型绝不被推荐。因为,循环调用recv()将大幅度推高CPU 占用率;此外,在这个方案中recv()更多的是起到检测“操作是否完成”的作用,实际操作系统提供了更为高效的检测“操作是否完成“作用的接口,例如select()多路复用模式,可以一次检测多个连接是否活跃。

3、IO复用

I/O多路复用(IO multiplexing)同阻塞式I/O本质上是一样的,有些地方也称这种IO方式为事件驱动IO(event driven IO),因为利用新的select()、poll()、epoll()等系统调用(函数),这里同样是会阻塞进程的,但是这里进程是阻塞在select或者poll这两个系统调用上,而不是阻塞在真正的IO操作上,由操作系统来负责轮询操作,与阻塞IO不同的是尽管看起来与阻塞IO相比,这里阻塞了两次,但是第一次阻塞在select上时,但select可以监控多个套接口上是否已有IO操作准备就绪的,而不是像阻塞IO那种,一次性只能监控一个套接口。select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个函数会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

 

当用户进程调用了select,那么整个进程会被阻塞,而同时,内核会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从内核拷贝到用户进程。

这个图和阻塞式IO的图其实并没有太大的不同,事实上还更差一些。因为这里需要使用两个系统调用(select和recvfrom),而阻塞式IO只调用了一个系统调用(recvfrom)。但是用select的优势在于它可以同时处理多个connection。(多说一句:所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)

在多路复用模型中,对于每一个socket,一般都设置成为非阻塞,但是,如上图所示,整个用户的process其实是一直被阻塞的。只不过process是被select这个函数阻塞,而不是被socket IO给阻塞。因此select()与非阻塞IO类似。

下面将重新模拟上例中从多个客户端接收数据的模型。

这种模型的特征在于每一个执行周期都会探测一次或一组事件,一个特定的事件会触发某个特定的响应。我们可以将这种模型归类为“事件驱动模型”。相比其他模型,使用select()的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。

但这个模型依旧有着很多问题。首先select()接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select()接口本身需要消耗大量时间去轮询各个句柄。很多操作系统提供了更为高效的接口,如Linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。如果需要实现更高效的服务器程序,类似epoll这样的接口更被推荐。遗憾的是不同的操作系统特供的epoll接口有很大差异,所以使用类似于epoll的接口实现具有较好跨平台能力的服务器会比较困难。其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。幸运的是,有很多高效的事件驱动库可以屏蔽上述的困难,常见的事件驱动库有libevent库,还有作为libevent替代者的libev库。这些库会根据操作系统的特点选择最合适的事件探测接口,并且加入了信号(signal) 等技术以支持异步响应,这使得这些库成为构建事件驱动模型的不二选择。

4、信号驱动IO

信号驱动I/O是一种不常用的I/O模型,首先我们允许套接口进行信号驱动I/O,并安装一个信号处理函数sigaltion,调用sigaltion系统调用,当内核中IO数据就绪时以SIGIO信号通知请求进程,请求进程再把数据从内核读入到用户空间,这一步是阻塞的。


 
5、异步IO(AIO)

异步IO与信号驱动IO最主要的区别就是信号驱动IO是由内核通知我们何时可以进行IO操作了,而异步IO则是由内核告诉我们IO操作何时完成了。具体来说就是,信号驱动IO当内核通知触发信号处理程序时,信号处理程序还需要阻塞在从内核空间缓冲区拷贝数据到用户空间缓冲区这个阶段,而异步IO直接是在第二个阶段完成后内核直接通知可以进程后续操作了,Linux下的异步IO其实用得不多,从内核2.6版本才开始引入。

工作进程调用I/O库函数epoll,工作进程不会因为I/O操作而阻塞,也不需要轮询,待I/O操作完成后会通知请求者。(异步I/O实现比较复杂,Nginx的支持也只是磁盘的异步I/O);

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从内核的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何阻塞。然后,内核会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,内核会给用户进程发送一个Signal,告诉它read操作完成了,在这整个过程中,进程完全没有被阻塞。用异步IO实现的服务器如近年比较流行的Nginx服务器。异步IO是真正非阻塞的,它不会对请求进程产生任何的阻塞,因此对高并发的网络服务器实现至关重要。

总结的IO模型有5种之多:阻塞IO,非阻塞IO,IO复用,信号驱动IO,异步IO。前四种IO模型的主要区别是在第一阶段,因为它们的第二阶段都是在阻塞等待数据由内核空间拷贝到用户空间;而异步IO很明显与前面四种有所不同,它在第一阶段和第二阶段都不会阻塞。具体参考如下:

转载于:https://my.oschina.net/mywiki/blog/893943

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值