分布直方图分析概率_55道题目,176多张图片,31种题型,带你认知高考概率题型内容...

本文通过55道题目、176张图片和31种不同题型,全面解析高考概率问题,涵盖系统抽样、数据统计、概率计算等方面,包括众数、中位数、平均数、方差等概念的解释与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

b9b7e3c41ccdb600a594a6f60013cf80.png

55道题目,176多张图片,31种题型,带你认知高考概率题型内容

55道题目,176多张图片,31种题型,带你认知高考概率题型内容

908b38219d3379712778e3dff369528c.png

6ec5522bf96b3a87da427f192581d3b7.png

c366b3604b16ea1022a0f0a30e88b6b0.png

本题主要考查系统抽样.

27c19e2636c9c024663712e3a405a7d7.png

本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.

2301239be6c85a3c1ca9aa89a9e1cdaa.png

02f507f062d61853bc8930576ba7bc6d.png

7cc955fe910c0000246eddfe71d21db3.png

众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;

中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;

平均数:反映一组数据的平均水平;

方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.

标准差是方差的算术平方根,意义在于反映一组数据的离散程度.

c103e71764c42994c2bb04a39e6bcf44.png

c03be8ba34cf58df74dc692b58132bb5.png

本题旨在考查学生对中位数、平均数、方差、极差本质的理解.

a37b9d86e6a9a457639cc294f4c3aabb.png

f7a4fabe4c5ce5506549d1aeb5a6dfc6.png

b465ffb88cf7384c4b3280495a90e4f9.png

该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.

b5059ec627f57b2c215dc3f99a0fc2a2.png

a91a67936f5ddce56dbf9f647844ec94.png

本题主要考查统计知识及对学生柱形图的理解

ef71e9cb83908b951c8a12a53a437daf.png

8fe8c87536d5f74fe0335ecdba0b9d77.png

由折线图,7月份后月接待游客量减少,A错误;本题选择A选项.

d8224f476770235d2f66ca0cd1e61468.png

61a4bf3d52c2baf9f8e64000a40e813c.png

解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.

322d9659b1074ede77e5b0090caa27cc.png

48909f9e95118e61d4021323d0c74258.png

作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.

6fe66ee4f8072c56729c289fc3a2cadf.png

应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.

a6536cf34102aee1baf0cec019209a81.png

本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.

65bb419efdb90538235e67d810101533.png

7961d9262e7d1f1fe796adc0bcdd3d04.png

8e50ff3de0f5cb7c4a920f7492d30f79.png

1f30af3a881ea02cf89c1f04c27c98d7.png

24440c3b6161f12f535da706e3fbfc05.png

对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式得出的结果.

df9022742819e73c654360a6940a06f5.png

e108678ac47156e1475cddf3b1dd7013.png

edaeee251a39a3dede5d99ccf9ff2777.png

本题主要考查事件的基本关系和概率的计算,属于基础题.

33353272e408701516b879f43c491395.png

a3c438480b5c81e28045d7140fdd0f8a.png

6c3102c7af86d49f46d79b42765bb156.png

48a6d1915b5b4f0f24a685a25a4231dd.png

对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算.

aa917fc1e83bdbbe8878856d8f4a7f34.png

37eca03036e80fab0540dd0f52e6afcf.png

该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.

5b79455fb889aec150b341213ef213cf.png

对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.

c833f149ea078e410c969c09fb3b8644.png

这是全国卷考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.

21ffe71642c98b0825ac7d0892df526b.png

0f690a09f25fdb04aeb892321558d5f8.png

267319e48b722302c30ae7771bf4fe21.png

本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.

a1f6672cf7e5c998eb9a03e27bc9593c.png

由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算.

ae210edfaecb5748ff17594a8512d8da.png

本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,等价转化的思想解题.

7c185a81f45145ce2fe43286284313b2.png

871cd3cc33d92d6afd8e117702911269.png

古典概型中基本事件方法:(1)列举法. (2)树状图法:较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:限制条件较多且元素数目较多的题目.

d19c78d502c8735e83e7f1be89b80327.png

9efe5489740d1691815f674c0cf8f2ba.png

n次独立重复试验.

b71edffc09b98051d3e004bfda421496.png

本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.

3bfbe4df3fa74f972721b21ba757a35a.png

本题考查离散型随机变量的方差的求法,考查二项分布的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

ebe380c4241a5d5ca11c88e4f32d1920.png

本题主要考查二项分布相关知识,属于中档题.

331e028630b1db1c50dfeb490c325f54.png

6c6a80afe288ba619c46f6a9a65736a6.png

89daae6a4740bb09ed11fb22de64a6b9.png

d9985f33cb563f54aa017e50ea283769.png

本题考查古典概型的相关性质,能否通过题意得出以及所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题。

9393193e5e48b4ef676d73390ae8a57d.png

68c505d2c11fe9d43c2564c72107c601.png

0aa4091503d37dedd0364b74db1d3953.png

a465c6ffc4002261cde4624bfd303b7a.png

本题考查平均值以及标准差的计算,主要考查平均值以及标准差的计算公式,考查学生从信息题中获取所需信息的能力,考查学生的计算能力,是简单题.

5afb118fd83e0113bd716002e156bbef.png

3d1874881602f76a91f91b04809576c7.png

e412093fc1ef9dce1895068852261a35.png

a442fc8851a8ac17fb5364822f8c3ddb.png

1平均数,古典概型概率;2统计.

4f4439ba0ec21876e8f80ef411d2f89c.png

96eaf81bcd269f8a575ae50a77a1b6f5.png

a88092b12215792a931d9c690720fbc6.png

d3a202c90d0118ff7573499e85005acd.png

9dc551fb0bc06eecd999b7607c6df1e3.png

1ceffe7d9845ec465a692b74b6397d27.png

本题考查茎叶图和特征数,求互斥事件和独立事件的概率,关键在于将事件分成相互独立互斥事件,分别求其概率,再运用概率的加法公式,属于基础题.

bf0e6ef5f1c3de0a1eca7c79e5ee5dc3.png

0bc95feb37d0c889094ae7a485fda178.png

b60150428c5db514d73aea05f72a9e8d.png

本题考查频率分布直方图和平均数,属于基础题.

9ea77d7adab0eb7fd081cd4e9eb99cc5.png

8812bad4763b50c4b98cbeb9091ecd28.png

7efc707d1396481f4bad90e99c657936.png

0c3f7a31c7f80f18fa099f77ae52852e.png

2b0b415b8548e91f75422ab0a50168a0.png

f102f69694b7ad353badca8b38465436.png

afb957a0e0978780545ff68cbfd97927.png

本题主要考查频率分布直方图及概率估计.

d95f9079ee603a3abaab17294271c977.png

4b94d96e1b56dde70118cb0fff7b8622.png

af8000b6e1b6ef1a83d4d7910a3dde45.png

4cdfbee019d3033a19a3e461c13fcdeb.png

6be57b269bc343cdb476e20ce78e94c7.png

7b3e2a4dbab6ff0d0fd45bd8a10b55fd.png

29d54455b1f018f48dec3130939c9e0c.png

fd194566f914cd43885b1f058fd39984.png

b8a15620aca499d3e6e6bdbca2bbe371.png

23e60629e3261e51169410f30597bab5.png

f9b0c1e644a345a4bdd405d9adf55caf.png

9882ef6a46b179ad9f5096d33bbb0c4d.png

该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.

86189b34e456f5f1d27c34f724db0344.png

8e219a00c49783301e945084fb09c105.png

8de3b3ef67b42c924edc88a985fd25c6.png

d081fc6d69c616b035e0291e187082d5.png

该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算的值,独立性检验,属于简单题目.

146993018aa7aa237f51974ef0c453b3.png

3409cc4167c8223e319b869b8d2cca08.png

6ae166a9f28770eaadaf03943362b373.png

b729ff0dcdc242c3b564cd47ca2ceb26.png

e1440344d511d59ce4f10bf2623e0767.png

bb005f29c14d95e886f5e1952bca273e.png

本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.

d6c7d300142f65c89aa7e581dc074884.png

0a43fd5dad87b7cbcf18d10af16650f0.png

931a127eaaebcfea6cb508053562a55d.png

1eb2d8715e54247600e35fa91cf23179.png

b1da477a367d760f4323380a93f49bd8.png

c430a230720b2672a3d79de795892604.png

(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大.

(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.

e2c420aee00830ca71a4ee50fc6f3f46.png

4b6484f5a8a8875d54bb36c83dd564de.png

5f51108a772844b83fa849902a81229c.png

c1c28a9c073f44bfec7929294dff0039.png

4adfdc4e891ecd79f7582da0a9fc5c65.png

本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

f6cb135be8db692cdad7afd4a295a2f6.png

9d37e484fa2fb994d8b443008de73e49.png

ad713b83b93ab3d63eb39348625170c7.png

c325f92f201f0ac0b4393c592b43275d.png

52a54a2efea7939c56b3ce23ce6af973.png

本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.

4bd4ee3b88b96ccfb71c4ee72e604282.png

f422b53f7c3ca2c80666a604734cf53d.png

d6b4fd53f8c0fa3ed68769904be1d520.png

615e963f326d55c283a9b14fd688d365.png

本题主要考查线性回归方程、平均数等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.

4770f1fd8bebb2d95cf32b7aad330bd4.png

1eaf7610f8056eaa91ced9e776db1951.png

a73ad4fa2855424ed53348ffe6d14ef0.png

0e557cb7e74fc7119cdaa878487f8647.png

6969ceef3f4e8f9c6b2c3ac23b91cf4b.png

线性相关系数与线性回归方程的求法与应用,(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出相关系数,然后根据相关系数的大小进行判断.求线性回归方程时要严格按照公式求解,并一定要注意计算的准确性.

4c0c318f3240392f89f6524837e016e6.png

73b953f4ffd26e3c9f831f01a971b8a4.png

54c5462c5e1a561528292c47edb3361b.png

f0aefac5e4e877cc15c92a354878fea2.png

604e455ec6779e2f9e982edd1c5e4532.png

已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点求参数.

18ceeda0df4f6250ba4d885e40d1c057.png

87b13021ab10ff73f283aa006a8e8e89.png

3fb331ec2c0dda7464651f9efd12bafc.png

0783b94707aa45c6a68de196d3be8749.png

ceaaae14f7faa433d0cf86003d5a2eb8.png

53082122688fb64d29c7bff321896deb.png

4e12f51212e0a5103eccb87e924c91dc.png

b56152d8af2b0d418b03f1e8cc45f989.png

e639f29a03207a9cc0b4e4415622f27c.png

9814368d5f34cb5b9a39f1a3db227c96.png

47ca9914f769a95010ee98f7882a300b.png

7d414853be46be6a2bf7c81ee1a43558.png

解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.

0d7d1fdb96d31cb2537ebe2c005d287b.png

9bf21f36762c2092ddddd26d4ebc5e6d.png

9a66fbdcadc967fa07780f7b76019552.png

194454dc3b7d855f926661e421961ab6.png

2ed1cb9169b4ba255ce0b6b6e6a2620e.png

条件概率的求法:(1)定义法:求P(A)和P(AB),由P(B|A),求出P(B|A);(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数n(AB),得P(B|A).

离散型随机变量均值的步骤:(1)随机变量X的意义,写出X可能取得的全部值;(2)求X取每个值时的概率;(3)写出X的分布列;(4)由均值定义求出EX.

c029c55c87adf08c07cd7aac826bdfc6.png

53968e0901186688cb10b86535843e6b.png

fc173cfe561acb6440ed762a86509f66.png

590d2d7512fc97b0d55d14c360e2d638.png

5294ced0464a698254637d5297f51333.png

8c72462f44d44e330b3d1faf59450ded.png

67b31afbaad57b5fdcaec7cada485450.png

f84e57de00c0af0f89bc4127ee9a3096.png

1347d3149037e366db461f608857f413.png

f1126b10a329931e93e4c36fc7da61f4.png

1259acf869a81be1127d6d012d5d0080.png

e2ae3b8c5764c7d4bea0bdc5f6af8111.png

be9be66a7077e8cdba8ccb93071dde7a.png

306044db035e27f4932ff4bbd3036868.png

661e252534631f3c7e303130555fae60.png

8c4ad02654d1a40f71dc90d1491d6b48.png

本题考查离散型随机变量分布列的求解、利用递推关系式证明等比数列、累加法求解数列通项公式和数列中的项的问题.本题综合性较强,要求学生能够熟练掌握数列通项求解、概率求解的相关知识,对学生分析和解决问题能力要求较高.

83ca3e4e408dd7160c025c6844befd22.png

13fa22d4f4bba81b5c2e2321ffc0e493.png

bd324e134b85bd69c504ee1193296846.png

38a2a515bb57fa409db8576d1e0391b0.png

64dc2f2e372ed3bc789f8a9b5c9f702f.png

1、频率分布直方图;2、正态分布的原则;3、二项分布的期望.

7861068db565a207b7cc0fb498ca3a23.png

19196e03359b4abdfc49621db622f399.png

80c121e5b89f7371bb8cb4bd4caf999a.png

d38fd1819516235a94c091b5f79165ec.png

e9068f9ba3eb181e448971f46ee9a729.png

2ae627cfc33eb1ec530bbe30d8068bb4.png

cacb49aee3aa53345bcfcaddc6b121d6.png

数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的原则.

110a6919c979f3545e0ac76d46bfaedb.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值