题意
给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数
Sol
神仙题Orz
首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\(i\)个数,他们的乘积为\(j\)的方案数
设\(g[k] = [\exists a_i = k]\)
转移的时候
\[f[i + 1][(j * k) \% M] += f[i][j] * g[k]\]
不难发现每次的转移都是相同的,因此可以直接矩阵快速幂,时间复杂度变为\(logN M^2\)
观察上面的式子,如果我们能把\((j * k) \% M\),变成\((j + k) \% M\)的话,就是一个循环卷积的形式了
这里可以用原根来实现,设\(g\)表示\(M\)的原根,\(mp[i] = j\)表示\(g^j = i\)
直接对每个物品构造生成函数,利用mp转移即可
因为转移是个循环卷积,所以统计答案的时候应该把第\(i\)项和第\(i+m-1\)项的系数加起来
至于为啥只统计一项。
#include<bits/stdc++.h>
using namespace std;
const int mod = 1004535809, G = 3, Gi = 334845270, MAXN = 1e5 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, X, S;
int r[MAXN], lim, L, ind[MAXN], s[MAXN], f[MAXN], a[MAXN], b[MAXN];
int mul(int a, int b) {
return 1ll * a * b % mod;
}
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int dec(int x, int y) {
return x - y < 0 ? x - y + mod : x - y;
}
int fp(int a, int p, int mod) {
int base = 1;
while(p) {
if(p & 1) base = 1ll * base * a % mod;
a = 1ll * a * a % mod; p >>= 1;
}
return base;
}
int GetG(int x) {
static int q[MAXN]; int tot = 0, tp = x - 1;
for(int i = 2; i * i <= tp; i++) {
if(!(tp % i)) {
q[++tot] = i;
while(!(tp % i)) tp /= i;
}
}
if(tp > 1) q[++tot] = tp;
for(int i = 2, j; i <= x - 1; i++) {
for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
if(j == tot + 1) return i;
}
}
void NTT(int *a, int N, int type) {
for(int i = 1; i < N; i++) if(i < r[i]) swap(a[i], a[r[i]]);
for(int mid = 1; mid < N; mid <<= 1) {
int R = mid << 1, Wn = fp(type == 1 ? G : Gi, (mod - 1) / R, mod);
for(int j = 0; j < lim; j += R) {
for(int w = 1, k = 0; k < mid; k++, w = mul(w, Wn)) {
int x = a[j + k], y = mul(w, a[j + k + mid]);
a[j + k] = add(x, y);
a[j + k + mid] = dec(x, y);
}
}
}
if(type == -1) {
for(int i = 0, inv = fp(lim, mod - 2, mod); i < N; i++) a[i] = mul(a[i], inv);
}
}
void mul(int *a1, int *b1, int *c) {
memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));//tag
for(int i = 0; i < M - 1; i++) a[i] = a1[i], b[i] = b1[i];
NTT(a, lim, 1); NTT(b, lim, 1);
for(int i = 0; i < lim; i++) a[i] = mul(a[i], b[i]);
NTT(a, lim, -1);
for(int i = 0; i < M - 1; i++) c[i] = add(a[i], a[i + M - 1]);
}
void Pre() {
lim = 1;
while(lim <= 2 * (M - 2)) lim <<= 1, L++;
for(int i = 0; i < lim; i++) r[i] = (r[i >> 1] >> 1) | (i & 1) << (L - 1);
int d = GetG(M);
for(int i = 0; i < M - 1; i++) ind[fp(d, i, M)] = i;
}
int main() {
N = read(); M = read(); X = read(); S = read();
Pre();
for(int i = 1; i <= S; i++) {
int x = read();
if(x) f[ind[x]]++;
}
s[ind[1]] = 1;
while(N) {
if(N & 1) mul(s, f, s);
mul(f, f, f); N >>= 1;
}
printf("%d", s[ind[X]]);
return 0;
}
/*
40000000 3 1 2
1 2
4 3 1 2
1 2
*/