[生成函数][NTT][多项式求逆]BZOJ 3456: 城市规划

Description D e s c r i p t i o n

n n 个有标号点的联通图的方案数。

Solution

fn f n n n 个有标号点的联通图的方案数。
考虑容斥。n个有标号点的一般图的方案数为 2(n2) 2 ( n 2 )
考虑图中的一个点所在联通块大小,设其为 i i 。那么就有(n1i1)种选法,剩下的乱选,为 2(ni2) 2 ( n − i 2 )
所以就有了这样的递推式:

fn=2(n2)i=1n1(n1i1)2(ni2)fi f n = 2 ( n 2 ) − ∑ i = 1 n − 1 ( n − 1 i − 1 ) 2 ( n − i 2 ) f i
移项整理就得到了:
2(n2)(n1)!=i=1nfi(i1)!2(ni2)(ni)! 2 ( n 2 ) ( n − 1 ) ! = ∑ i = 1 n f i ( i − 1 ) ! 2 ( n − i 2 ) ( n − i ) !
考虑生成函数
F(x)G(x)H(x)F(x)G(x)=====n02(n2)(n1)!xnn0fn(n1)!xnn02(n2)n!xn(GH)(x)(FH1)(x)(11)(12)(13)(14)(15) (11) F ( x ) = ∑ n ≥ 0 2 ( n 2 ) ( n − 1 ) ! x n (12) G ( x ) = ∑ n ≥ 0 f n ( n − 1 ) ! x n (13) H ( x ) = ∑ n ≥ 0 2 ( n 2 ) n ! x n (14) F ( x ) = ( G ∗ H ) ( x ) (15) G ( x ) = ( F ∗ H − 1 ) ( x )
多项式求逆就好啦。。
好像现在才知道FFT NTT都是循环卷积的,所以要开大一倍。。。

UPD:
后来又推了一发。。

G(x)C(x)==n02(n2)n!xnn0fnn!xn(16)(17) (16) G ( x ) = ∑ n ≥ 0 2 ( n 2 ) n ! x n (17) C ( x ) = ∑ n ≥ 0 f n n ! x n
就有
G(x)G(x)C(x)===(CG)(x)eC(x)lnG(x)(18)(19)(20) (18) G ′ ( x ) = ( C ′ ∗ G ) ( x ) (19) G ( x ) = e C ( x ) (20) C ( x ) = ln ⁡ G ( x )

#include <bits/stdc++.h>
using namespace std;

const int N = 404040;
const int MOD = 1004535809;
const int G = 3;
typedef long long ll;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

int w[2][N];
int g, ig, num;
int n, m;
int R[N];
int fac[N], inv[N];
int F[N], H[N], iH[N];

inline int Pow(int a, int b) {
    int c = 1;
    while (b) {
        if (b & 1) c = (ll)c * a % MOD;
        b >>= 1; a = (ll)a * a % MOD;
    }
    return c;
}
inline int Inv(int x) {
    return Pow(x, MOD - 2);
}
inline int Mod(int x) {
    while (x >= MOD) x -= MOD; return x;
}
void Prep(int n) {
    g = Pow(G, (MOD - 1) / n);
    ig = Inv(g); num = n;
    w[0][0] = w[1][0] = 1;
    for (int i = 1; i <= n; i++) {
        w[0][i] = (ll)w[0][i - 1] * ig % MOD;
        w[1][i] = (ll)w[1][i - 1] * g % MOD;
    }
}
inline void FFT(int *a, int n, int r) {
    static int x, y, INV;
    for (int i = 0; i < n; i++)
        if (R[i] > i) swap(a[i], a[R[i]]);
    for (int i = 1; i < n; i <<= 1)
        for (int j = 0; j < n; j += (i << 1))
            for (int k = 0; k < i; k++) {
                x = a[j + k]; y = (ll)a[j + k + i] * w[r][num / (i << 1) * k] % MOD;
                a[j + k] = Mod(x + y); a[j + k + i] = Mod(x - y + MOD);
            }
    if (!r) {
        INV = Inv(n);
        for (int i = 0; i < n; i++)
            a[i] = (ll)a[i] * INV % MOD;
    }
}
void GetInv(int *a, int *b, int n) {
    static int tmp[N];
    if (n == 1) return (void)(b[0] = Inv(a[0]));
    GetInv(a, b, n >> 1);
    for (int i = 0; i < n; i++) {
        tmp[i] = a[i]; tmp[i + n] = 0;
    }
    int L = 0; while (!(n >> L & 1)) L++;
    for (int i = 1; i < (n << 1); i++)
        R[i] = (R[i >> 1] >> 1) | ((i & 1) << L);
    FFT(tmp, n << 1, 1); FFT(b, n << 1, 1);
    for (int i = 0; i < (n << 1); i++)
        tmp[i] = (ll)b[i] * (2 + MOD - (ll)tmp[i] * b[i] % MOD) % MOD;
    FFT(tmp, n << 1, 0);
    for (int i = 0; i < n; i++) {
        b[i] = tmp[i]; b[n + i] = 0;
    } 
}
inline int Calc(int x) {
    return (ll)x * (x - 1) / 2 % (MOD - 1);
}

int main(void) {
    freopen("1.in", "r", stdin);
    read(n); inv[1] = 1;
    for (m = 1; m <= n; m <<= 1);
    for (int i = 2; i < m; i++)
        inv[i] = (ll)(MOD - MOD / i) * inv[MOD % i] % MOD;
    fac[0] = inv[0] = 1;
    for (int i = 1; i < m; i++) {
        fac[i] = (ll)fac[i - 1] * i % MOD;
        inv[i] = (ll)inv[i - 1] * inv[i] % MOD;
    }
    for (int i = 0; i < m; i++) {
        F[i] = (ll)Pow(2, Calc(i)) * inv[i - 1] % MOD;
        H[i] = (ll)Pow(2, Calc(i)) * inv[i] % MOD;
    }
    Prep(m << 1); GetInv(H, iH, m);
    FFT(F, m <<= 1, 1); FFT(iH, m, 1);
    for (int i = 0; i < m; i++) F[i] = (ll)F[i] * iH[i] % MOD;
    FFT(F, m, 0);
    printf("%d\n", (ll)F[n] * fac[n - 1] % MOD);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值