教你统计日留存、周留存、月留存率更准确的方法。

什么是留存用户?

某段时间内的新增用户,经过一段时间后,仍继续使用应用的被认作是留存用户,这部分用户占当时新增用户的比例即是留存率。

统计留存用户的时间粒度有哪些?

自然日:包括1天后、2天后、3天后、4天后、5天后、6天后、7天后、14天后和30天后

自然周:包括1周后、2周后、3周后、4周后、5周后、6周后、7周后、8周后、9周后

自然月:包括1月后、2月后、3月后、4月后、5月后、6月后、7月后、8月后、9月后

日留存率:快速判断App粘性

日留存率:可以很快的帮助我们判断 App 的粘性到底强不强。我们可以通过日留存率的数值来判断一个 App 的质量,通常这个数字如果达到了 40% 就表示产品非常优秀了。我们可以结合产品的新手引导设计和新用户转化路径来分析用户的流失原因,通过不断的修改和调整来降低用户流失,提升次日留存率。

留存用户表- 日留存率

日留存率计算方式:

举例说明:假设某 App 在1月3日的新增用户有100个,这100个用户在1月4日中启动应用的有55个,在1月5日中启动应用的有45个,在1月6日启动应用的有30个,则1月3日的新增用户在1天后留存是55/100=55%,2天后留存是45/100=45%,3天后留存是30/100=30%,4-7天后,14天后和30天后同理,依次类推。

周留存率:判断App用户忠诚度

周留存率:我们可以通过周留存率来判断一个用户的忠诚度,在一周的时间段里,用户通常会经历一个完整的使用和体验周期,如果在这个阶段用户能够留下来,就有可能成为忠诚度较高的用户。

留存用户表 -周留存率

周留存率计算方式:

举例说明:假设3月的第1周某APP的新增用户有200个,这200个用户在3月的第2周中有100个再次启动了应用(无启动次数限制),3月的第3周中有80个再次启动应用,3月的第4周中有50个再次启动应用,则3月第1周的新增用户在1周后(即第2周)的留存率是100/200=50%,在2周后的留存率是80/200=40%,在3周后的留存率是50/200=25%。4周后到9周后的留存同理,依次类推。

月留存率:了解App版本迭代效果

月留存率:通常移动 App 的迭代周期为 2 - 4 周一个版本,所以月留存率是能够反映出一个版本的用户留存情况,一个版本的更新,总是会或多或少的影响用户的体验,所以通过比较月留存率能够判断出每个版本更新是否对用户有影响。

留存用户表-月留存率

月留存率计算方式:

举例说明:假设某 App 5月份新增用户有1000个,这1000人在6月份启动过应用的有600人,7月份启动过应用的有450人,8月份启动过应用的有300人,则5月的新增用户在一个月后的留存率是600/1000=60%,二个月后的留存率是450/1000=45%,三个月后的留存率是300/1000=30%。4月后到9月后的留存同理,依次类推。

特别强调一下,App 的留存率并不一定会按照日期呈递减状态。

比如:

结合日留存的例子,假如1月3日的新增用户在1月7日有40个再次启动了应用,则1月3日的新增用户在4天后的留存是40/100=40%,4天后留存(40%)>3天后留存(30%),这是正常的,各天/周/月的留存率数据都是独立的,取决于用户的启动行为。

留存率的几种主流计算方法(转)

https://www.cnblogs.com/madsnotes/articles/6137183.html

转载于:https://my.oschina.net/mickelfeng/blog/1828092

Power BI是一款由微软开发的商业智能工具,可以用于数据分析和可视化。留存率是衡量用户持续参与应用程序的指标之一。在Power BI中,可以通过使用DAX函数和可视化工具来计算和展示留存率留存率是指在特定时间段内用户的持续参与程度。通常,留存率是根据用户在特定时间段内的活跃度来计算的。可以使用Power BI中的时间和期函数,如TODAY()和DATESBETWEEN(),来定义特定的时间段。然后,可以使用COUNT()和DISTINCTCOUNT()函数来计算用户在不同时间段内的活跃度。 计算留存率的一种常用方法是使用透视表工具。首先,数据需要被导入到Power BI中,并进行必要的清洗和转换。然后,可以在透视表中选择相应的字段用作行和列,并将计算字段设置为留存率。计算字段可以使用DAX函数来计算活跃用户的数量,并将其与初始用户数量进行比较。最后,可以应用适当的可视化格式和样式,以便直观地展示留存率的趋势和变化。 使用Power BI的另一种方法是使用DAX函数来计算留存率,并创建定制的可视化。可以使用CALCULATE()函数和FILTER()函数来筛选出参与用户的活动,并使用DIVIDE()函数来计算留存率。然后,可以使用Power BI提供的各种图表和图形来展示留存率的结果。 无论采用哪种方法,Power BI都能够帮助用户轻松计算和展示留存率。借助其强大的数据分析和可视化功能,用户可以好地了解和监测用户参与程度,并采取相应的措施来提高用户的留存率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值