复数乘法是什么?

逛木虫的时候看到一个很旧的数学帖子被人挖了坟,这个帖子大概是讨论如果把复数看作是向量,那么复数乘法应该怎么看待?向量之间有乘法?例如复数$(1+i)$和复数$i$,其对应的向量分别是$\left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]$和$\left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]$,那么两个向量怎么运算才能得到复数$-1+i$对应的向量$\left[ {\begin{array}{*{20}{c}} -1\\ 1 \end{array}} \right]$呢?

事实上,我认为只把复数看作是向量是不够的!既然把复数看作向量,那么我们也应该讨论(线性)变换,这是make sense的。因此,如果我们把向量也看作是线性变换,那么结果就是trivial的了!

我们知道,每个非零复数都具有指数形式(exponential form):$z = r{e^{i\theta }}$。而${e^{i\theta }}$是一个“旋转变换”,即把一个向量顺时针旋转$\theta$角度,在线性代数的角度看来,其对应的线性变换是$\left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{ - \sin \theta }\\
{\sin \theta }&{\cos \theta }
\end{array}} \right].$因此,每一个复数都可以唯一地对应于一个线性变换:$$z = r{e^{i\theta }} \sim r\left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{ - \sin \theta }\\
{\sin \theta }&{\cos \theta }
\end{array}} \right].$$ 于是,复数乘法$z_1 * z_2$我们就可以把复数$z_1$看作是线性变换$T$,而复数$z_2$看作是其对应的向量$v$,就有$$z_1 * z_2 \sim T v.$$最后我们把向量$T v$再对应回复数域即可。

Example. 计算复数乘法$(1+i)*i$。

首先我们容易知道$1 + i = \sqrt 2 {e^{i\frac{\pi }{4}}} \sim \sqrt 2 \left[ {\begin{array}{*{20}{c}}
{\cos \frac{\pi }{4}}&{ - \sin \frac{\pi }{4}}\\
{\sin \frac{\pi }{4}}&{\cos \frac{\pi }{4}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1}\\
1&1
\end{array}} \right]$,并且 $i \sim \left[ {\begin{array}{*{20}{c}}
0\\
1
\end{array}} \right]$,则$\left[ {\begin{array}{*{20}{c}}
1&{ - 1}\\
1&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0\\
1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
1
\end{array}} \right] \sim -1 + i$。因此$\left( {1 + i} \right)i =  - 1 + i$。

转载于:https://www.cnblogs.com/aujun/p/4844604.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值