【有奖征文】“失业”程序员的苦辣酸甜

   是整个IT行业的主力军,有个段子说得好:“程序员才是未来互联网变革的主角或主力军。不懂技术,你最多只能做做老板。“


      作为程序员不知道大家有没有失业的经历,如果有,那么大家会选择用什么样的方式去面对“失业”呢?你是愿意继续做程序员还是“最多只能做做老板”呢?

      也许你失业后很迷茫、也许你失业后找到了更好的工作、也许你失业后意气风发成了创业者从而开创了属于自己的一片天地。分享你的失业人生,你在失业前后的精彩故事吧。

活动时间:2014年6月11日~7月11日


话题要求:

1.  本话题为开放性话题,以“失业”为话题,谈谈你失业前后的经历、囧事、心情故事、经验谈、失业后的创业想法和行为,将文章发布在自己的51CTO博客中,体裁不限;

2.  题目格式“【失业的程序员】xxxxxxxxx”;
3.  请在标签中加入“博客话题”、“失业的程序员”,方便搜索阅读;

4.  文末请附上以下内容:

     

【博客话题】 失业的程序员 正在进行,欢迎大家参与,分享你失业后的囧事、趣事、经验谈!

 详情查看:http://shenyisyn.blog.51cto.com/4968488/1422893 

5.  完成任务的博主,请在本博文评论区回复告知已参与博客话题。

  

活动奖品:

    参与本话题的文章,访问量及获得“赞”数量(刷赞将取消评选资格)最多的参赛用户中选取8位用户,可获51cto博主—沈逸所著的图书《失业的程序员》一本。

  1400906331_9575.jpg

 如果您在活动中没有获奖,可以到京东或当当购买噢。

 地址:当当     京东
















本文转自shenyisyn51CTO博客,原文链接: http://blog.51cto.com/shenyisyn/1424674,如需转载请自行联系原作者



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值