一、基础概念与理论
专家系统基础
- 定义:专家系统是一种人工智能程序,它利用专家知识和推理能力来解决特定领域中的复杂问题。
- 特点:具有专业知识、可解释性和可靠性。
- 组成部分:
- 知识库:存储特定领域的专家知识,包括事实、规则和操作规范。
- 推理机:用于记忆规则和控制策略的程序,能够根据知识进行推理和导出结论。
- 用户界面:使系统与用户进行对话的界面,用户能够输入数据、提出问题并了解推理过程及结果。
二、知识表示与知识获取
知识表示
- 定义:将人类知识转化为计算机可识别的形式,以便计算机能够理解和利用这些知识。
- 主要表示方法:
- 规则表示:使用条件-动作(IF-THEN)规则来表示专家知识。
- 框架表示:使用框架结构来表示实体和关系,框架是一种数据结构,可以用来表示实体的属性和值。
- 逻辑表达式表示:使用先验知识和观察结果来表示专家知识,例如使用预定义的逻辑符号和变量来表示知识。
三、推理机与决策过程
1.推理机概述
推理机是专家系统的核心组成部分,它负责模拟专家的思维过程,根据知识库中的知识和用户提供的信息进行推理,以得出问题的解决方案或结论。推理机的主要功能包括:解释和理解用户的问题或请求,根据知识库中的规则进行推理,生成并解释推理结果,以及提供用户反馈和解释推理过程。
2.推理机的核心算法
推理机采用多种算法来实现推理过程,其中主要包括前向推理、反向推理和混合推理。
1.前向推理(Forward Chaining)
前向推理是从已知的事实出发,通过应用规则库中的规则,逐步推导出新的结论或事实。这种推理方式适用于已知事实较多,而目标结论不明确的情况。前向推理的优点是可以发现隐含的事实和关系,但可能会产生大量的中间结论,导致推理效率较低。
2.反向推理(Backward Chaining)
反向推理是从目标结论出发,逆向使用规则库中的规则,逐步寻找支持该结论的事实或条件。这种推理方式适用于目标结论明确,而需要找出支持该结论的事实或条件的情况。反向推理的优点是推理目标明确,可以有效地减少无关事实的干扰,提高推理效率。
3