BZOJ 1782 [Usaco2010 Feb]slowdown 慢慢游

BZOJ_1782

    刚看完一部惊悚片,赶紧A个题缓和一下气氛,要不该做噩梦了……

    这个题目相当于每个节点都有一个标号,然后求从根到当前节点的路径上,小于当前节点的标号一共有多少个,可以在dfs的时候用树状数组来统计。

#include<stdio.h>
#include<string.h>
#define MAXD 100010
#define MAXM 200010
int N, D, first[MAXD], e, next[MAXM], v[MAXM], sum[MAXD], who[MAXD], res[MAXD];
void update(int x, int d)
{
    for(; x <= N; x += x & -x) sum[x] += d;
}
int query(int x)
{
    int ans = 0;
    for(; x > 0; x -= x & -x) ans += sum[x];
    return ans;
}
void add(int x, int y)
{
    v[e] = y;
    next[e] = first[x], first[x] = e ++;
}
void init()
{
    memset(first, -1, sizeof(first[0]) * (N + 1)), e = 0;
    for(int i = 1; i < N; i ++)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        add(x, y), add(y, x);
    }
    for(int i = 1; i <= N; i ++)
    {
        int p;
        scanf("%d", &p);
        who[p] = i;
    }
}
void dfs(int cur, int fa)
{
    res[who[cur]] = query(who[cur]);
    update(who[cur], 1);
    for(int i = first[cur]; i != -1; i = next[i])
        if(v[i] != fa) dfs(v[i], cur);
    update(who[cur], -1);
}
void solve()
{
    memset(sum, 0, sizeof(sum[0]) * (N + 1));
    dfs(1, -1);
    for(int i = 1; i <= N; i ++) printf("%d\n", res[i]);
}
int main()
{
    while(scanf("%d", &N) == 1)
    {
        init();
        solve();
    }
    return 0;
}

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值