[BZOJ1782] [Usaco2010 Feb]slowdown 慢慢游

传送门

http://www.lydsy.com/JudgeOnline/problem.php?id=1782

题目大意

给定一棵n个点的树,每次从1出发到达a[i],询问到达a[i]之后,经过了几个之前已经到达的点

题解

简单画下图我们就能发现,每次走完就相当于给a[i]的子树权值(之后到达某个点的答案)+1,为了维护这个,我们用DFS序把子树维护到一条线段上,来回答每次询问
我们需要支持区间修改,单点查询的数据结构,很明显线段树可以,但是我想介绍一下树状数组的写法
树状数组我们知道只能单点修改,区间查询(前缀和),所以这里我们用到差分序列来维护,对于[L,R],单点修改L节点使其加一,R+1节点减一

const
 maxn=100010;
var
 y:array[0..maxn,1..2]of longint;
 t,x,z:array[0..maxn]of longint;
 w:array[0..4*maxn,1..2]of longint;
 i,j,k:longint;
 n,len,a,b,ans:longint;
procedure init(a,b:longint);
begin
 w[len,1]:=b;
 if w[a,2]=0
 then w[a,2]:=len else w[w[a,1],2]:=len;
 w[a,1]:=len; inc(len);
end;

procedure dfs(a:longint);
var tt:longint;
begin
 inc(len); y[a,1]:=len; z[a]:=len;
 tt:=w[a,2];
 while tt<>0 do
  begin
   k:=y[w[tt,1],1];
   if y[w[tt,1],1]=0
   then dfs(w[tt,1]);
   tt:=w[tt,2];
  end;
 y[a,2]:=len;
end;

procedure update(a,b:longint);
begin
 while a<=n do
  begin
   inc(t[a],b);
   inc(a,a and(-a));
  end;
end;

function query(a:longint):longint;
var k:longint;
begin
 k:=0;
 while a>0 do
  begin
   inc(k,t[a]);
   dec(a,a and(-a));
  end;
 exit(k);
end;

begin
 readln(n); len:=n+1;
 for i:=1 to n-1 do
  begin
   readln(a,b);
   init(a,b); init(b,a);
  end;
 for i:=1 to n do
  readln(x[i]);
 len:=0;
 dfs(1);
 for i:=1 to n do
  begin
   ans:=query(z[x[i]]);
   update(y[x[i],1],1); update(y[x[i],2]+1,-1);
   writeln(ans);
  end;
end.
题目描述 牛牛和她的朋友们正在玩一个有趣的戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值