本文由码农场同步,最新版本请查看原文:http://www.hankcs.com/nlp/cs224n-gru-nmt.html
从动机层面直观地充实了GRU和LSTM的理解,介绍了MT的评测方法,讨论了NMT中棘手的大词表问题和一些常见与最新的解决办法。深入GRU 把GRU再详细讲一讲。RNN的梯度消失就不赘述了,红线连乘多次下溢出。而GRU额外添加了一些“捷径”红线。Update Gate用来自适应学习应该把多少注意力放到前一个隐藏层状态上。Reset Gate自适应地删除不需要的连接。RNN寄存器朴素RNN读取所有寄存器,运算后存入所有寄存器,没有灵活性。GRU寄存器门多了之后,就可以灵活地选择读取部分寄存器,执行运算...
继续阅读:码农场 » CS224n笔记11 GRU和NMT的进一步话题
原文链接:http://www.hankcs.com/nlp/cs224n-gru-nmt.html