一、题目链接
http://hihocoder.com/problemset/problem/1079
二、题意
给定一个长度为L的区间,给你n个子区间,每一个区间涂成一种颜色,问最后这个区间内有几种不同的颜色。
三、思路
这题和http://poj.org/problem?id=2528题意几乎一模一样,所以,我一开始就毫不犹豫地把POJ这题的思路重新敲了一遍,样例一测,没问题,提交上去,WA。然后,我意识到了,因为POJ的这题数据特别水,对于[1, 10],[1, 4],[6, 10]这种样例,离散化之后变成[1, 4],[1, 2],[3, 4]。原本答案应该是3的变成了2,然而POJ就是能过,也太水了点。
然后,我用另外一种方式离散化后(具体见附录一),把这个问题给解决了,提交上去,还是WA。
思考良久,测了很多样例,都没发现有什么错误,突然,脑子中灵光一闪,莫非这种区间是连续的?也就是说:[1, 2],[3, 4]这两段区间不是连续的,因为区间[2, 3]之间没涂色。而我们平时处理离散区间的时候,[1, 2]代表位置1和2,[3, 4]代表位置3和4,所以,在离散区间的问题中,这是连续的;但是在连续区间问题中,这不连续。那么,该怎么变呢?
只要把修改节点的值所代表的意义即可。原来叶子节点代表的是:[i, i]区间内,也就是第i个元素的信息。现在变成,叶子节点表示:[i, i + 1]这段小区间的信息。换句话说,原来维护的是点(单点或多点)的信息,现在变成维护区间的信息,其他都是一样的。那么,刚刚那个离散化带来的问题怎么处理呢?由于我们维护的是区间的信息,对于[1, 10],[1, 4],[5, 10]这种样例,现在维护的是区间信息,修改[1, 4]和[5, 10]区间时,[4, 5]区间一直没被修改,所以,自然也不会影响我们的查询。因此,原本维护点信息时离散化带来的问题,变成维护区间后,直接被和谐了,多么愉快的一件事啊!
四、源代码
#include<bits/stdc++.h> using namespace std; typedef pair<int, int> PII; const int MAXN = 1e5 + 10; int n, m; int nn, mm; PII ranges[MAXN]; int all[MAXN << 2]; int color[MAXN << 2]; void pushDown(int root) { if(~color[root]) { color[root << 1] = color[root]; color[root << 1 | 1] = color[root]; color[root] = -1; } } void update(int ul, int ur, int val, int root = 1, int l = 0, int r = mm - 1) { if(l >= r)return; if(l > ur || r < ul)return; if(l >= ul && r <= ur) { color[root] = val; return; } if(r - l > 1) { pushDown(root); int mid = (l + r) >> 1; if(mid - l >= 1)update(ul, ur, val, root << 1, l, mid); if(r - mid >= 1)update(ul, ur, val, root << 1 | 1, mid, r); } } set<int> ans; void query(int ql, int qr, int root = 1, int l = 0, int r = mm - 1) { if(l > qr || r < ql)return; if(r - l == 1) { if(color[root] == -1)return; ans.insert(color[root]); return; } if(r - l > 1) { pushDown(root); int mid = (l + r) >> 1; if(mid - l >= 1)query(ql, qr, root << 1, l, mid); if(r - mid >= 1)query(ql, qr, root << 1 | 1, mid, r); } } int main() { #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin); #endif // ONLINE_JUDGE int a, b; while(~scanf("%d%d", &n, &m)) { nn = 0; memset(color, -1, sizeof(color)); for(int i = 0; i < n; ++i) { scanf("%d%d", &ranges[i].first, &ranges[i].second); all[nn++] = ranges[i].first; all[nn++] = ranges[i].second; } sort(all, all + nn); mm = unique(all, all + nn) - all; for(int i = 0; i < n; ++i) { int ul = lower_bound(all, all + mm, ranges[i].first) - all; int ur = lower_bound(all, all + mm, ranges[i].second) - all; update(ul, ur, i + 1); } ans.clear(); query(0, mm - 1); printf("%d\n", ans.size()); } return 0; }
附录一
线段树维护点信息时,离散化会带来上述问题,把原来不连续的点变的连续。那么,解决办法就是,在有序的离散化数组中,在值相差大于1的两个相邻元素之间加入一个数,这个数的数值和位置都介于两个相邻元素之间,数值直接取为小数字+1即可。举个例子:对于[1, 10],[1, 4],[6, 10]这种样例,对应的有序的离散化数组是:{1, 4, 6, 10},那么,在<1, 4>,<4, 6>,<6, 10>之间加入一个数字,再排序,得到新的有序的离散化数组:{1, 2, 4, 5, 6, 7, 10}。做区间修改时,[1, 4]区间被离散化成[1, 3](下标从1开始),[6, 10]区间被离散化成[5, 7],原来4和6不相邻,现在也不相邻,所以,做查询时就不会受离散化影响了。而如果是[1, 10],[1, 4],[5, 10]这种样例,对应的有序的离散化数组是:{1, 4, 5, 10},在<1, 4>,<5, 10>之间加入一个数字,再排序,得到新的有序的离散化数组:{1, 2, 4, 5, 6, 10}。原本4和5是连续的,现在还是,所以,查询结果仍然不会受离散化影响。因此,离散化带来的问题就这么愉快地解决了。
另外,加入元素时,只需要在数组末尾添加新元素,然后再排下序就OK了。没必要用链表啥的去模拟。吃力不讨好。