hihoCoder 1079 离散化(线段树离散化)

根据提示我们要给长度为L的区间建立线段树,但是L很大,所以不能直接对L建树。

转化一下就是一共n个区间,最多2*n个点,所以我们可以使用较小的2*n个数来代替这些比较大的数而保证他们的相对大小不发生变化。然后我们就可以对长度为2*n的区间建立线段树了。


然后需要注意的一点是离散的线段树结点为[i,i],左儿子区间为[l,mid],右儿子区间为[mid+1,r]。

但是对于连续的区间线段树结点为[i,i+1],左儿子区间为[l,mid],右儿子区间为[mid,r]

然后按照线段树的方法做就Ok了。

#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
const int M = (N << 2) * 2;

int l[M], r[M], lazy[M], num[M];//num为最大值
int a[N], b[N], c[2 * N], id[2 * N];

void pushUp(int i){
	num[i] = max(num[i * 2], num[i * 2 + 1]);
}

void pushDowm(int i){
	if (lazy[i] == 0)return;
	lazy[i * 2] = lazy[i];
	lazy[i * 2 + 1] = lazy[i];
	num[i * 2] = num[i * 2 + 1] = lazy[i];
	lazy[i] = 0;
}

void build(int ll, int rr, int i){
	l[i] = ll, r[i] = rr;
	if (ll + 1 == rr){
		num[i] = 0;
		return;
	}
	int mid = (ll + rr) >> 1;
	build(ll, mid, 2 * i);
	build(mid, rr, 2 * i + 1);
	pushUp(i);
}

void update(int ll, int rr, int id, int i){
	if (l[i] >= ll&&r[i] <= rr){
		num[i] = id;
		lazy[i] = id;
		return;
	}
	if (lazy[i])pushDowm(i);
	int mid = (l[i] + r[i]) >> 1;
	if (rr <= mid)update(ll, rr, id, i * 2);
	else if (ll >= mid)update(ll, rr, id, i * 2 + 1);
	else{
		update(ll, mid, id, i * 2);
		update(mid, rr, id, i * 2 + 1);
	}
	pushUp(i);
}

int query(int ll, int rr, int i){
	if (ll <= l[i] && rr >= r[i]){
		return num[i];
	}
	if (lazy[i])pushDowm(i);
	int mid = (l[i] + r[i]) >> 1;
	if (rr <= mid)return query(ll, rr, i * 2);
	else if (ll >= mid)return query(ll, rr, i * 2 + 1);
	else return max(query(ll, mid, i * 2), query(mid, rr, i * 2 + 1));
}

int main(){
	int n, L; scanf("%d %d ", &n, &L);
	for (int i = 1; i <= n; i++){
		scanf("%d %d", a + i, b + i);
		c[i] = a[i];
		c[i + n] = b[i];
	}
	sort(c + 1, c + 1 + 2 * n);
	int cnt = 0;
	for (int i = 1; i <= 2 * n; i++){
		if (id[c[i]])continue;
		id[c[i]] = ++cnt;
	}
	build(1, cnt, 1);
	for (int i = 1; i <= n; i++){
		int x = id[a[i]], y = id[b[i]];
		update(x, y, i, 1);
	}

	memset(a, 0, sizeof a);

	for (int i = 1; i < cnt; i++){
		a[query(i, i + 1, 1)] = 1;
	}

	int ans = 0;
	for (int i = 1; i <= n; i++){
		ans += a[i];
	}
	printf("%d\n", ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值