根据提示我们要给长度为L的区间建立线段树,但是L很大,所以不能直接对L建树。
转化一下就是一共n个区间,最多2*n个点,所以我们可以使用较小的2*n个数来代替这些比较大的数而保证他们的相对大小不发生变化。然后我们就可以对长度为2*n的区间建立线段树了。
然后需要注意的一点是离散的线段树结点为[i,i],左儿子区间为[l,mid],右儿子区间为[mid+1,r]。
但是对于连续的区间线段树结点为[i,i+1],左儿子区间为[l,mid],右儿子区间为[mid,r]
然后按照线段树的方法做就Ok了。
#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
const int M = (N << 2) * 2;
int l[M], r[M], lazy[M], num[M];//num为最大值
int a[N], b[N], c[2 * N], id[2 * N];
void pushUp(int i){
num[i] = max(num[i * 2], num[i * 2 + 1]);
}
void pushDowm(int i){
if (lazy[i] == 0)return;
lazy[i * 2] = lazy[i];
lazy[i * 2 + 1] = lazy[i];
num[i * 2] = num[i * 2 + 1] = lazy[i];
lazy[i] = 0;
}
void build(int ll, int rr, int i){
l[i] = ll, r[i] = rr;
if (ll + 1 == rr){
num[i] = 0;
return;
}
int mid = (ll + rr) >> 1;
build(ll, mid, 2 * i);
build(mid, rr, 2 * i + 1);
pushUp(i);
}
void update(int ll, int rr, int id, int i){
if (l[i] >= ll&&r[i] <= rr){
num[i] = id;
lazy[i] = id;
return;
}
if (lazy[i])pushDowm(i);
int mid = (l[i] + r[i]) >> 1;
if (rr <= mid)update(ll, rr, id, i * 2);
else if (ll >= mid)update(ll, rr, id, i * 2 + 1);
else{
update(ll, mid, id, i * 2);
update(mid, rr, id, i * 2 + 1);
}
pushUp(i);
}
int query(int ll, int rr, int i){
if (ll <= l[i] && rr >= r[i]){
return num[i];
}
if (lazy[i])pushDowm(i);
int mid = (l[i] + r[i]) >> 1;
if (rr <= mid)return query(ll, rr, i * 2);
else if (ll >= mid)return query(ll, rr, i * 2 + 1);
else return max(query(ll, mid, i * 2), query(mid, rr, i * 2 + 1));
}
int main(){
int n, L; scanf("%d %d ", &n, &L);
for (int i = 1; i <= n; i++){
scanf("%d %d", a + i, b + i);
c[i] = a[i];
c[i + n] = b[i];
}
sort(c + 1, c + 1 + 2 * n);
int cnt = 0;
for (int i = 1; i <= 2 * n; i++){
if (id[c[i]])continue;
id[c[i]] = ++cnt;
}
build(1, cnt, 1);
for (int i = 1; i <= n; i++){
int x = id[a[i]], y = id[b[i]];
update(x, y, i, 1);
}
memset(a, 0, sizeof a);
for (int i = 1; i < cnt; i++){
a[query(i, i + 1, 1)] = 1;
}
int ans = 0;
for (int i = 1; i <= n; i++){
ans += a[i];
}
printf("%d\n", ans);
return 0;
}