java libsvm使用_libsvm java版本使用心得(转)

本文介绍了如何在Java项目中使用libsvm库进行SVM模型训练和预测。通过示例代码详细展示了svm_problem、svm_parameter的设置以及svm_load_model、svm_train、svm_predict等关键方法的用法。
摘要由CSDN通过智能技术生成

http://blog.csdn.net/u010340854/article/details/19159883

https://github.com/cjlin1/libsvm

项目中要用到svm分类器,自己实现的话太费时间,于是寻找开源实现,找到了libsvm。

Java版本是一个jar包,引入到工程中即可使用。

需要注意的是,java版本充满了c++风格(类名小写,命名使用下划线_分隔等等),使用者需要稍微适应一下。

核心类是svm类,最常用的几个方法如下(都是static方法):

svm.svm_load_model(String),望文生义即可知是加载已训练好的svm模型,参数是模型文件名。

svm.svm_save_model(String,svm_model),按指定的名称保存模型。

svm.svm_train(svm_problem,svm_parameter),训练模型,该方法有两个参数svm_problem,保存了训练数据,包括数据数,特征数组,类别数组。参数svm_parameter用户设置svm的一些参数,例如svm_type设置svm类型,kernel_type设置核函数类型等。训练时需要注意的是,如果你的训练数据比较多,训练时间可能很长。

svm.svm_predict(svm_model,svm_node[])和svm.svm_p

redict_probability(svm_model,svm_node[],double[]),都用于预测类别,不同的是后一个方法同时包含了预测类别的概率。

下面给出完整的demo:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值