leetcode 台阶_leetcode-爬楼梯(动态规划)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2

输出: 2

解释: 有两种方法可以爬到楼顶。

1. 1 阶 + 1 阶

2. 2 阶

示例 2:

输入: 3

输出: 3

解释: 有三种方法可以爬到楼顶。

1. 1 阶 + 1 阶 + 1 阶

2. 1 阶 + 2 阶

3. 2 阶 + 1 阶

思路:可以这样想,n个台阶,一开始可以爬 1 步,也可以爬 2 步,那么n个台阶爬楼的爬楼方法就等于 一开始爬1步的方法数 + 一开始爬2步的方法数,这样我们就只需要计算n-1个台阶的方法数

和n-2个台阶方法数,同理,计算n-1个台阶的方法数只需要计算一下n-2个台阶和n-3个台阶,计算n-2个台阶需要计算一下n-3个台阶和n-4个台阶……

20180812175458388892.png

classSolution {public int climbStairs(intn) {if(n==1)return 1;int sum[]=new int[n+1];

sum[0]=0;sum[1]=1;sum[2]=2;for(int i=3;i<=n;i++){

sum[i]=sum[i-2]+sum[i-1];

}returnsum[n];

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值