字数总计:7.3k|阅读时长: 23 分钟
文章作者: @霜夏
原文地址:【平面几何】 浅谈平面几何中的「对称性分析」 | 霜夏酱の小屋
前言
在平面几何的学习中,不知你有没有遇到过这样的问题呢?
这类问题的图形可以分为两个部分,两个部分的结构是相似的,并且在结构上的性质似乎也是相同的;至于要证的结论,则是一个同时包括两个部分中的一些点或线的命题.经过一定探索,往往可以发现这一结论可以通过两部分图形中的一些性质推出;然而这两部分图形中的性质却相互成充要条件,除去一些简单的结论,经常出现要证一边则需证另一边的情况,找不到解决问题的着力点.它就像是一种「对称」,虽然边边角角没有确切的相等关系,然而对其任意一个部分的任意一个结论,在另一边中都能找到相对应的类似结论.
那么,这一类问题有什么通性呢?又如何去解决这一类问题呢?
本文将尝试建立这一类问题的一个理论体系,并对这一类问题提出几个处理方法.在以下的内容中,我们称这一类问题为 「对称性问题」 ,并将对此类问题的分析转为对点的分析;对于点,我们将建立一种称为 「交换」 的变换,并在该变换下对这类问题进行研究.
当然,本文只是本人的一个尝试,其中难免有疏漏.如有问题,还敬请各位dalao指正!
对称性问题的理论分析
(本节是理论部分,用于建立对称性问题的概念.如果只想看下面的结论的话,可以跳过本节)
现在,我们将尝试建立「对称性问题」这个概念.
众所周知:我们说一个数学对象有「对称性」,是建立在一种变换上的;任何一个对象的任一种对称性,也只能基于变换来定义及分析.例如,任何一个等边三角形在关于其轴的轴对称变换下有对称性,在关于其中心的旋转变换下也具有对称性(即所谓「旋转对称性」).那么,「对称性问题」的对称性建立在什么变换之上呢?
本节将建立 「交换」 这个变换,并在此基础上给出「对称性问题」的严格定义.我们注意到,对于平面几何中常研究的直线与圆(一般二次曲线暂不纳入研究范围),都可以由多个点所确定,例如前者可由两个点唯一确定、后者可由三个点(包括广义圆)唯一确定.因此,我们主要对点的变换进行研究.这就让我们想到对点进行分类:将原几何图形中的点分为三类,即 自由点 、 受限点 和 生成点 .有了这样的分类,我们就能更好地进行研究.
以上内容,我们将在下面进行更为深入的阐述.
几何图形与点
我们先考虑一个问题:当我们说「研究平面几何」时,我们到底在研究什么?
有的人可能会说「我们研究的是各种各样的曲线,以及曲线与直线发生关系时产生的新的结论.」的确,在很多时候,我们研究的确实也是如此.但这并没有很好地回答我们的问题:当我们说「研究平面几何」时,我们 到底 在研究什么?
这就引出所谓的「轨迹」概念:平面上,在一定的限制条件下可取的点构成的集合,因此,所有的曲线,其本质都 是点的轨迹.
那么,这对我们的研究有什么帮助呢?很遗憾,帮助并不是很大……但这个概念给我们带来了一个研究思路:即从对图形中一般几何对象的分析,转为 对图形中的点的分析 .
如何进行呢?事实上,我们可以从 决定曲线形状的点 入手.
我们都知道:一条直线由两个点(端点)唯一确定,一个圆由不共线三点唯一确定.因此,对一个几何对象的研究,可以转为对确定其位置及形状的点进行研究.因此,由于一个完整的几何图形是由多个几何对象组成的,有关整个几何图形的研究, 也就可以看作对决定了图形的点进行研究 .
举个例子,在下面这张图( 2019联赛A卷二试1 )中,虽然可以看见许多的线与圆,但决定这些元素的是图中的点:点
但是,由上面的分析,我们发现:一些点是由另一些点决定的,有关这些点的分析,本质上是对决定它们的点进行分析.因此,我们应该怎样去分析这些点呢?
自由点、受限点与生成点
从上面的例子中,我们已经看到这些点之间的依赖关系:一些点可以自由移动,另一些点则由前一种点的位置确定,后面的点是被前面的点唯一确定的.为此,我们提出三个概念: 「自由点」 、 「受限点」 和 「生成点」 .
定义1 如果一个点的位置不由其它的点唯一确定(也就是说,这个点可以自由移动),则称这个点为 自由点 . 定义2 如果一个点的位置不由其它的点唯一确定,但它的轨迹由其它的点唯一确定,则称这个点为 「受限点」 . 定义3 如果一个点的位置由其它的点唯一确定,则称这个点为 生成点 .
生成点为什么叫「生成点」?我们观察上面的图形.在上面的图形中,中点
判断一个点的类型的简单方法:将这个图用geogebra作出来,如果给出的点是深蓝色,那它就是自由点;如果是浅蓝色就是受限点;如果是黑色,那就是生成点啦www
一种变换:「交换」
下面,我们可以进入正题了:所谓「对称性问题」的理论分析.但在那之前,我们先要明确: 「对称性问题」到底是关于什么对称的?
为此,我们需要更仔细地对几何图形的结构进行研究.你可能记得,在一些讲题的文章或视频中,会出现这样的讲解:
……这两个点的地位是相同的……
好耶!这似乎就是所谓「对称性」所在了.但是,什么叫「地位相同」???
为了解决这个问题,我们尝试从几何图形的结构入手.例如,在下面这张图 (2019CMO部分图形) 中,你看到了什么?
在这张图中,
事实上,如果我们仔细观察这个结构,可以发现一些相似的结论:
-
,;
-
,;
- ……
在这里,我们可以发现:对于这些结构,其对应的结论也是相似的.另外,如果把两边一起看,又会有一些新的结论:
-
四点共圆;
-
;
- ……
在这里,我们又能发现什么?
综合上面的两组结论,我们可以发现:如果在上面结论中的每一条中,把
更进一步:如果把对称点中的自由点和生成点分开,对两类点分别考虑,会发生什么呢?
由于生成点是由自由点唯一确定的,因此, 如果把两个自由点互换,它们对应的受限点、生成点、结构等也会互换. 基于此,我们就可以提出一种新的变换:
定义4(交换变换) 对于一个图形,定义一种变换:.它的意义是对图形中的两个自由点、,将这两个点互换(因此由这两个点所决定的几何元素也一起互换了),得到一个新图形.
在这个角度下,我们就可以定义所谓 对称性 了:
定义5(对称性) 对于一个图形gg及其中的两个自由点、,若,则称图形关于自由点、具有对称性.
结合之前的探索,我们知道,如果点对称,它们对应的结论也是对称的.从这个角度,我们可以对「结论」也作一个「对称性」的定义.这里就从略了,请读者自行思考,这一定义应该是怎样的呢?
「变」与「不变」
我们再来看之前那个例子.
我们现在可以看出,原图关于自由点
我们先从几何结构开始吧.
首先,与
对于前者,有哪些呢?
首先,点
其次,对根轴
点
对于这样在变换下不变的元素,我们称这样的元素为 「不变元素」 .如果一个不变元素是点,则称它为 「不动点」 .
对于后者呢?还记得上面说的第一组结论、第二组结论吗?
事实上,如果我们仔细观察这个结构,可以发现一些相似的结论:,;,;
……
在这里,我们可以发现:对于这些结构,其对应的结论也是相似的.另外,如果把两边一起看,又会有一些新的结论:四点共圆;;
……
在这里,我们又能发现什么?
对于第一组,结论在点互换后也是互换的;但让我们感兴趣的是第二组.对于第二组结论,它们自身在互换前后是不变的.我们把这样的结论称为 「不变结论」 .
不变结论与不变元素统称为「不变量」.
现在,我们就可以对「对称性问题」下一个定义了:
定义6 如果关于图形的平面几何问题,其中图形关于其中两点具有对称性,且其欲证结论为关于这两点的不变结论,则称这个问题为「对称性问题」.
对称性问题的处理方法
在上面,我们已经定义了「对称性问题」这一概念.那么,我们要怎样处理这类问题呢?
既然对称性问题与关于两个自由点的交换变换有关,那么,从这个变换的角度来看待就很重要了.而看待变换,最重要的无非两点:一是运用不变量,二是对变换中性质的打破.
运用不变量
对对称类问题,这一思路的重点,即是寻找问题图形中的不变量,并尝试运用此解决问题.
例1(初二难度)
如图,点
分析
例1虽然是一道初二难度的题,但它也是一道对称性问题;另一方面,它也是一道比较简单的题(知道各位都是
首先我们看:哪些点是自由点、哪些点是生成点呢?
自由点和受限点——
生成点——很显然了,
再看看:哪些是不变元素呢?
交换
不变性质有哪些呢?
证明
略,读者自证不难.
例2 (2012联赛)
如图,在锐角三角形
分析
本题与上题相反,同为对称性问题,但本题中,相对于
现在的问题是:怎么考虑呢?考虑到
证法1
证法2
作出圆
故
证法3
作圆
因为
例3 (2013联赛)
如图,
分析
我们来看一道难一点的题.可以看出,本题也是一道对称性问题(关于
我们考虑:「构造不变量」.
回到原题.我们先来逆推分析.原题的结论相当于
回忆我们刚刚说过的「构造不变量」.对于「
看来不动点这招是用不了了.我们来看看:不变性质上有没有突破.
证明
如图,取
由三等分点,易知
另一方面,由 Ptolemy定理 ,可得
打破对称性
以上,我们看了一些比较简单的对称性问题,并以此为例介绍了分析对称性问题的方法.然而,并非所有对称性问题都像上面的例题那样简单——很多问题的「不变元素」很难刻画,以致不得不刻画其两边对称图形的性质.除此之外,也有文章开头所讲的那样——两部分图形中的性质却相互成充要条件,除去一些简单的结论,经常出现要证一边则需证另一边的情况,找不到解决问题的着力点——的情况出现.这样一来,我们又如何解决它呢?
通过上面的分析,这一类问题的「难点」,其本质原因在于其「对称性」——证明一个结论,需要证明其对称图形的同一结论.既然如此,我们何不尝试换种角度,绕过这一「对称性」的限制呢?
「打破对称性」方法便是这一思想的一个体现.这一方法的操作如下:
- 明确想要在某一半图形证明的性质(这一性质通常与另一半图形的相同性质互为充要条件);
- 在这一半图形中恰当地选取 幻像点 ,使之在这一半图形中符合欲证结论;
- 尝试证明这一 幻像点 与我们需要的点是同一点.
也就是说,它的本质是「同一法」策略,尝试进行一种「非对称式」构造.可能看着不太优美,但出于解决问题的方便性,为什么不用呢?
例4 (Mannheim定理)
如图,三角形
分析
我们从一个熟知的定理开始吧.这个与伪圆有关的定理,相信对于学习竞赛的你早就已经熟悉了.然而,问题是,怎么证呢?
观察图形.我们发现,原题恰好是一个对称性问题,其中II是不动点,它的性质也就是我们最关注的东西.另外,对于两圆相切类问题,首要的当然是做出它们的切点
——通过精确作图,我们会发现:
我们目前不知道这一性质有何作用,因此先放一放.现在我们来顺推一下:
首先,我们看到
现在我们假设已经证出了以上两个性质.现在看看能不能只用这两个性质导出原题——可以看出,这一方法确实可证!
于是现在,我们只需要证上面的一组共圆即可.然而,当我们在尝试时,就会尴尬地发现:证不出来……
事实是,如果要证其中的一组共圆,我们就需要一个角的关系,而导出这个角的关系恰需要另一组共圆.结合这两组共圆的地位是平等的,这一结论实际上意味着——我们要用这个共圆来证这个共圆……
死胡同了?不,换个视角,我们就能绝处逢生.
正如上面所说,证明这组共圆的主要问题是:我们需要用另一组共圆来证,因此有一个循环论证的问题.但是,我们「假装」已经证出了这组共圆,则另一组共圆也就可以证出来了.因此,如果我们从同一法角度考虑,用这组共圆来刻画这个点,先把另一组共圆推出来,最后再来证这两个点重合,不就证出了这个性质?
好耶,就这么干!
证明
用同一法.记
于是
又由熟知结论知
现在,由于
可得
分析2
当然,对于这道对称性问题,首要的还是想直接找出这个
证明2
例5 (爱尖子)
如图,四边形
分析
很容易发现该题也是一道对称性问题,唯一的不动点是
当然,对于条件,在
——毕竟,它们是「不动点」.
我们尝试连接这两个点,发现:这根连线过
因此,我们把这个点(就
证明
本题比较简单,证明我就不放了.相信看了上面的一题,你也能很快证出来!
很多问题比较复杂,需要综合运用两种技巧(「构造不变量」和「打破对称性」).我们来看一道例题:
例6 (爱尖子)
如图,
分析
本题的题设一看就不容易www
很显然本题也是对称性问题,并且不动点只有
我们还是先把题设要求的「对称直线」作出来吧,顺带切点也给作了.这就要求我们作出
现在,我们作出了交点
当然是切点啦.先不管我们一开始无法说「切点」的困难,我们先来看看这个切点有什么性质.问题是,到底有什么性质呢?
我们随便拉几个圆,看看:
原来有这么多共圆!
由此可见,切点的性质是极其重要的了.为此,如何刻画
直接推?试一下,发现不是太行,会出现像之前一样的问题(一边推另一边).所以,我们尝试对
来吧,上同一!
证明
(直接上图了,知乎的公式编辑器用着太难受了QAQ)
(不清晰的话可以看这里:【平面几何】 浅谈平面几何中的「对称性分析」 | 霜夏酱の小屋 (frigus27.xyz))
怎么样,是不是也有想试一试的冲动?(被打
后记
以上,就是对称性问题的一些结论了,差不多就这样吧(
话说回来,这还是我第一次投出研究性的文章呢……
其实早就想写这篇文章了,大概初三时见了许多这样的一个问题,大概有了自己的一套解题思路,于是就想着写下这篇文章.可是,想了很久,最后直到高一才写出来.这篇文章写了断断续续有一个月了吧,也算费了不少时间.
后来,我与 @Dolphin 大佬讨论了一下,感觉在「对称性」的概念这方面还有可商榷之处.Dolphin大佬提出了这样的观点:在本文中定义的「对称性」,事实上与图论中的自对应有关.对文中的「交换变换」,他也提出了很多概念,让我大开眼界.也许后面我们会合著一篇文章,探讨下这个「对称性」的本质是什么.
在这里,特别感谢 @Dolphin,在文章的最终定稿阶段,他帮了我许多!
另外,也感谢每一位读者,您能用心读到这里,实属不易(
既然这样……
夏夏能厚颜无耻地求个赞吗QAQ(被打
练习
- 完成文章中所有未给出解答的例题的证明;
- 证明 Brocard 定理:四边形
内接于圆,交于,交于,交于.求证:.
- 试证明 Mannheim定理 的两个重要推广: Thébault定理 和 沢山引理 .
- 锐角
中,,、分别为、上的点,满足,交于.关于的对称点为,交圆于.求证:圆与圆相切.(参考答案)
-
中,为其外接圆,直线与相切.求证:关于中各边的对称直线,两两相交形成的交点构成的三角形,其外接圆与相切.(参考答案 pdf第61页)
一点吐槽
早就听很多大佬说知乎的公式编辑器难用了,以前也没太在意,直到现在自己写博客了才发现MathJax内联公式是真的香,唉~
所以,强烈要求知乎出内联公式!出displaymath!用[]()$$
`写latex!
另外,欢迎大家来我的博客坐坐呀~
https://frigus27.xyz/frigus27.xyz