mfc关于任意直线的对称变换_平面几何|浅谈平面几何中的「对称性分析」

本文探讨了平面几何中对称性问题的理论体系,特别是关于「对称性问题」的「交换」变换。通过对自由点、受限点和生成点的分类,建立了对称性问题的概念,并提出了一种新的变换方法——「交换」,用于分析对称性问题。文章通过多个例题展示如何运用不变量和打破对称性的策略来解决此类问题。
摘要由CSDN通过智能技术生成
字数总计:7.3k|阅读时长: 23 分钟
文章作者: @霜夏
原文地址:【平面几何】 浅谈平面几何中的「对称性分析」 | 霜夏酱の小屋

前言

在平面几何的学习中,不知你有没有遇到过这样的问题呢?

这类问题的图形可以分为两个部分,两个部分的结构是相似的,并且在结构上的性质似乎也是相同的;至于要证的结论,则是一个同时包括两个部分中的一些点或线的命题.经过一定探索,往往可以发现这一结论可以通过两部分图形中的一些性质推出;然而这两部分图形中的性质却相互成充要条件,除去一些简单的结论,经常出现要证一边则需证另一边的情况,找不到解决问题的着力点.它就像是一种「对称」,虽然边边角角没有确切的相等关系,然而对其任意一个部分的任意一个结论,在另一边中都能找到相对应的类似结论.

那么,这一类问题有什么通性呢?又如何去解决这一类问题呢?

本文将尝试建立这一类问题的一个理论体系,并对这一类问题提出几个处理方法.在以下的内容中,我们称这一类问题为 「对称性问题」 ,并将对此类问题的分析转为对点的分析;对于点,我们将建立一种称为 「交换」 的变换,并在该变换下对这类问题进行研究.

当然,本文只是本人的一个尝试,其中难免有疏漏.如有问题,还敬请各位dalao指正!


对称性问题的理论分析

(本节是理论部分,用于建立对称性问题的概念.如果只想看下面的结论的话,可以跳过本节)

现在,我们将尝试建立「对称性问题」这个概念.

众所周知:我们说一个数学对象有「对称性」,是建立在一种变换上的;任何一个对象的任一种对称性,也只能基于变换来定义及分析.例如,任何一个等边三角形在关于其轴的轴对称变换下有对称性,在关于其中心的旋转变换下也具有对称性(即所谓「旋转对称性」).那么,「对称性问题」的对称性建立在什么变换之上呢?

本节将建立 「交换」 这个变换,并在此基础上给出「对称性问题」的严格定义.我们注意到,对于平面几何中常研究的直线与圆(一般二次曲线暂不纳入研究范围),都可以由多个点所确定,例如前者可由两个点唯一确定、后者可由三个点(包括广义圆)唯一确定.因此,我们主要对点的变换进行研究.这就让我们想到对点进行分类:将原几何图形中的点分为三类,即 自由点受限点生成点 .有了这样的分类,我们就能更好地进行研究.

以上内容,我们将在下面进行更为深入的阐述.

几何图形与点

我们先考虑一个问题:当我们说「研究平面几何」时,我们到底在研究什么?

有的人可能会说「我们研究的是各种各样的曲线,以及曲线与直线发生关系时产生的新的结论.」的确,在很多时候,我们研究的确实也是如此.但这并没有很好地回答我们的问题:当我们说「研究平面几何」时,我们 到底 在研究什么?

这就引出所谓的「轨迹」概念:平面上,在一定的限制条件下可取的点构成的集合,因此,所有的曲线,其本质都 是点的轨迹.

那么,这对我们的研究有什么帮助呢?很遗憾,帮助并不是很大……但这个概念给我们带来了一个研究思路:即从对图形中一般几何对象的分析,转为 对图形中的点的分析

如何进行呢?事实上,我们可以从 决定曲线形状的点 入手.

我们都知道:一条直线由两个点(端点)唯一确定,一个圆由不共线三点唯一确定.因此,对一个几何对象的研究,可以转为对确定其位置及形状的点进行研究.因此,由于一个完整的几何图形是由多个几何对象组成的,有关整个几何图形的研究, 也就可以看作对决定了图形的点进行研究

举个例子,在下面这张图( 2019联赛A卷二试1 )中,虽然可以看见许多的线与圆,但决定这些元素的是图中的点:点

equation?tex=A%2CB%2CC 决定了三角形
equation?tex=ABC 及中点
equation?tex=M ,点
equation?tex=P 决定了两个圆,又和
equation?tex=MP 一起决定了
equation?tex=D
equation?tex=E .因此,要研究这个图形,我们只需要研究其中的点即可.

d3b52c06fb92193f5b8ad30de51499c4.png

但是,由上面的分析,我们发现:一些点是由另一些点决定的,有关这些点的分析,本质上是对决定它们的点进行分析.因此,我们应该怎样去分析这些点呢?

自由点、受限点与生成点

从上面的例子中,我们已经看到这些点之间的依赖关系:一些点可以自由移动,另一些点则由前一种点的位置确定,后面的点是被前面的点唯一确定的.为此,我们提出三个概念: 「自由点」「受限点」「生成点」

定义1 如果一个点的位置不由其它的点唯一确定(也就是说,这个点可以自由移动),则称这个点为 自由点定义2 如果一个点的位置不由其它的点唯一确定,但它的轨迹由其它的点唯一确定,则称这个点为 「受限点」定义3 如果一个点的位置由其它的点唯一确定,则称这个点为 生成点

生成点为什么叫「生成点」?我们观察上面的图形.在上面的图形中,中点

equation?tex=M 是由限制条件「线段
equation?tex=BC 的中点」唯一确定的,因此可以说「这个点是从自由点
equation?tex=P
equation?tex=Q 生成的.」同理,观察点DD,它是由限制条件「直线
equation?tex=PM 与圆
equation?tex=ABP 的交点」唯一确定的,因此可以说「这个点是从点
(不一定要是自由点)
equation?tex=A
equation?tex=B
equation?tex=P
equation?tex=M 生成的」.由此,读者不难推致「生成点」的起名原因了.
判断一个点的类型的简单方法:将这个图用geogebra作出来,如果给出的点是深蓝色,那它就是自由点;如果是浅蓝色就是受限点;如果是黑色,那就是生成点啦www

一种变换:「交换」

下面,我们可以进入正题了:所谓「对称性问题」的理论分析.但在那之前,我们先要明确: 「对称性问题」到底是关于什么对称的?

为此,我们需要更仔细地对几何图形的结构进行研究.你可能记得,在一些讲题的文章或视频中,会出现这样的讲解:

……这两个点的地位是相同的……

好耶!这似乎就是所谓「对称性」所在了.但是,什么叫「地位相同」???

为了解决这个问题,我们尝试从几何图形的结构入手.例如,在下面这张图 (2019CMO部分图形) 中,你看到了什么?

db9bb4b50d16472ed98ea7a1b744ec80.png

在这张图中,

equation?tex=AD 是角平分线,
equation?tex=S 是两圆的外位似中心,PP是两圆根轴上一点,
equation?tex=PE
equation?tex=PF 是切线.于是,在这张图中,圆
equation?tex=ABD 、圆
equation?tex=ACD 「地位是平等的」,点
equation?tex=E
equation?tex=F 「地位是平等的」.在这里是什么意思?

事实上,如果我们仔细观察这个结构,可以发现一些相似的结论:

  • equation?tex=O_1F%5Cbot+PE
    equation?tex=O_2F%5Cbot+PF
  • equation?tex=O_1B%3DO_1D%3DO_1A
    equation?tex=O_2C%3DO_2D%3DO_2A
  • ……

在这里,我们可以发现:对于这些结构,其对应的结论也是相似的.另外,如果把两边一起看,又会有一些新的结论:

  • equation?tex=EBCF 四点共圆;
  • equation?tex=PE%3DPF
  • ……

在这里,我们又能发现什么?

综合上面的两组结论,我们可以发现:如果在上面结论中的每一条中,把

equation?tex=%28E%2CF%29
equation?tex=%28B%2CC%29
equation?tex=%28O_1%2CO_2%29 分别互换,所得的新结论与圆结论是相同的;对于第一组,把前一个结论如此替换后就变成后一个结论;对于第二组,结论在互换前后不变.这里又体现出了一种对称性:
在结构对称的图形中,其每个结构中的对应结论在点的互换意义下也是对称的.

更进一步:如果把对称点中的自由点和生成点分开,对两类点分别考虑,会发生什么呢?

由于生成点是由自由点唯一确定的,因此, 如果把两个自由点互换,它们对应的受限点、生成点、结构等也会互换. 基于此,我们就可以提出一种新的变换:

定义4(交换变换) 对于一个图形
equation?tex=g ,定义一种变换:
equation?tex=g%27%3D%5Cepsilon%28g%2CA%2CB%29 .它的意义是对图形
equation?tex=g 中的两个自由点
equation?tex=A
equation?tex=B ,将这两个点互换(因此由这两个点所决定的几何元素也一起互换了),得到一个新图形
equation?tex=g%27

在这个角度下,我们就可以定义所谓 对称性 了:

定义5(对称性) 对于一个图形gg及其中的两个自由点
equation?tex=A
equation?tex=B ,若
equation?tex=%5Cepsilon%28g%2CA%2CB%29%3Dg ,则称
图形
equation?tex=g
关于自由点
equation?tex=A
equation?tex=B
具有对称性.

结合之前的探索,我们知道,如果点对称,它们对应的结论也是对称的.从这个角度,我们可以对「结论」也作一个「对称性」的定义.这里就从略了,请读者自行思考,这一定义应该是怎样的呢?

「变」与「不变」

我们再来看之前那个例子.

db9bb4b50d16472ed98ea7a1b744ec80.png

我们现在可以看出,原图关于自由点

equation?tex=%28B%2CC%29 具有对称性:将
equation?tex=B
equation?tex=C 互换,则圆
equation?tex=O_1 与圆
equation?tex=O_2 互换,
equation?tex=E
equation?tex=F 也互换,原图中所有与
equation?tex=B
equation?tex=C 有关结构与结论都互换了,然而互换后原图的结构是不变的(点
equation?tex=G 看似没有对应点,其实只是没有画出来).那么,问题是:在这个变换下,哪些东西变了(形式上的),哪些东西没变?

我们先从几何结构开始吧.

首先,与

equation?tex=B
equation?tex=C 有关的点肯定互换了,于是一个点没有发生变化,它一定与BB及CC无关,或者是同时由
equation?tex=B
equation?tex=C 共同决定的点.

对于前者,有哪些呢?

首先,点

equation?tex=A
equation?tex=D 是不变的:点
equation?tex=A 是自由点,点
equation?tex=D 是由
equation?tex=A
equation?tex=B
equation?tex=C 共同确定的生成点.因此,根轴
equation?tex=AD 是不变的.

其次,对根轴

equation?tex=AD ,其上的点
equation?tex=P 是受限点,它受到点
equation?tex=A
equation?tex=D 的限制.因此,
equation?tex=P 在此变换下也是不变的.

equation?tex=S 呢?我们发现,它是
equation?tex=EF
equation?tex=BC 的交点,又是圆
equation?tex=O_1 与圆
equation?tex=O_2 的外位似中心.因此,它同时与
equation?tex=B
equation?tex=C 有关,当然是不变的啦.

对于这样在变换下不变的元素,我们称这样的元素为 「不变元素」 .如果一个不变元素是点,则称它为 「不动点」

对于后者呢?还记得上面说的第一组结论、第二组结论吗?

事实上,如果我们仔细观察这个结构,可以发现一些相似的结论:
equation?tex=O_1F%5Cbot+PE
equation?tex=O_2F%5Cbot+PF
equation?tex=O_1B%3DO_1D%3DO_1A
equation?tex=O_2C%3DO_2D%3DO_2A

……
在这里,我们可以发现:对于这些结构,其对应的结论也是相似的.另外,如果把两边一起看,又会有一些新的结论:
equation?tex=EBCF 四点共圆;
equation?tex=PE%3DPF

……
在这里,我们又能发现什么?

对于第一组,结论在点互换后也是互换的;但让我们感兴趣的是第二组.对于第二组结论,它们自身在互换前后是不变的.我们把这样的结论称为 「不变结论」

不变结论与不变元素统称为「不变量」.

现在,我们就可以对「对称性问题」下一个定义了:

定义6 如果关于图形
equation?tex=g 的平面几何问题,其中图形
equation?tex=g 关于其中两点具有对称性,且其欲证结论为关于这两点的不变结论,则称这个问题为「对称性问题」.

对称性问题的处理方法

在上面,我们已经定义了「对称性问题」这一概念.那么,我们要怎样处理这类问题呢?

既然对称性问题与关于两个自由点的交换变换有关,那么,从这个变换的角度来看待就很重要了.而看待变换,最重要的无非两点:一是运用不变量,二是对变换中性质的打破.

运用不变量

对对称类问题,这一思路的重点,即是寻找问题图形中的不变量,并尝试运用此解决问题.

例1(初二难度)

如图,点

equation?tex=B
equation?tex=A
equation?tex=C 按顺序排列在一条直线上,在直线的同向作等边三角形
equation?tex=ABD
equation?tex=ACE ,连
equation?tex=BE
equation?tex=CD 分别交
equation?tex=AD
equation?tex=AE
equation?tex=F
equation?tex=G ,求证:三角形
equation?tex=AFG 是等边三角形.

9d7e0e15cb237e904895f0b299583c8e.png

分析

例1虽然是一道初二难度的题,但它也是一道对称性问题;另一方面,它也是一道比较简单的题(知道各位都是

equation?tex=MOer ,当然这题是简单题啦www)为此,我们拿这道题出来,用来帮大家熟悉对称性分析.

首先我们看:哪些点是自由点、哪些点是生成点呢?

自由点和受限点——

equation?tex=A 是自由点,但
equation?tex=B
equation?tex=C 应当算自由点还是受限点呢?事实上,我们可以不拘泥于这个问题,因为当下重要的是对问题进行分析.为此,我们可以考虑把
equation?tex=B
equation?tex=C 当成自由点,而将
equation?tex=A 当成受限点.在这里,分析时要灵活考虑.

生成点——很显然了,

equation?tex=D
equation?tex=E
equation?tex=F
equation?tex=G 都是生成点.

再看看:哪些是不变元素呢?

交换

equation?tex=B
equation?tex=C ,发现所有元素都与另外的元素互换了位置,初看是没有不变元素的(除了单个的受限点
equation?tex=A ).因此,我们考虑从不变性质入手.

不变性质有哪些呢?

equation?tex=BE%3DCF
equation?tex=%5Ctriangle+BAE%5Ccong%5Ctriangle+DAC
equation?tex=%5Ctriangle+AFG 等边……挺多嘛,就从这里入手了!

证明

略,读者自证不难.

equation?tex=%5Csquare

例2 (2012联赛)

如图,在锐角三角形

equation?tex=ABC 中,
equation?tex=AB%3EAC
equation?tex=M
equation?tex=N
equation?tex=BC 边上不同两点,使
equation?tex=%5Cangle+BAM%3D%5Cangle+CAN .设
equation?tex=%5Ctriangle+ABC
equation?tex=%5Ctriangle+AMN 的外心分别为
equation?tex=O_1
equation?tex=O_2 ,求证:
equation?tex=O_1
equation?tex=O_2
equation?tex=A 三点共线.

d2d06e76b40fa20bcff98969c4e846b0.png

分析

本题与上题相反,同为对称性问题,但本题中,相对于

equation?tex=B
equation?tex=C 的不变元素更多.例如,可以很容易看出
equation?tex=A
equation?tex=O_1
equation?tex=O_2 都是不变元素.另一方面,
equation?tex=O_1+
equation?tex=O_2
equation?tex=A 共线的性质正是我们要证的结论,因此直接从该不变量中考虑更好.

现在的问题是:怎么考虑呢?考虑到

equation?tex=O_1
equation?tex=O_2 是外心,导角肯定是一种方法;另一方面,作出两个圆,很容易发现两圆相切,我们也可以从这方面考虑.

证法1

equation?tex=%5C%5C+%5Cbegin%7Baligned%7D+%5Cangle+BAO_1%26%3D90%C2%B0-+%5Cdfrac%7B1%7D%7B2%7D%5Cangle+AO_1B%5C%5C%26%3D90%C2%B0-%5Cangle+BCA%5C%5C%26%3D90%C2%B0-%28%5Cangle+BNA-%5Cangle+NAC%29%5C%5C%26%3D90%C2%B0-%5Cdfrac%7B1%7D%7B2%7D%5Cangle+BO_2M%2B%5Cangle+BAM%5C%5C%26%3D%5Cangle+BAO_2%EF%BC%8E%5Cquad%5Csquare+%5Cend%7Baligned%7D

证法2

作出圆

equation?tex=ABC 在点
equation?tex=A 处的切线​
equation?tex=l .则

equation?tex=%5C%5C%5Cbegin%7Baligned%7D+%5Cangle+%28AM%2Cl%29%26%3D%5Cangle+%28AB%2Cl%29%2B%5Cangle+MAN%5C%5C%26%3D%5Cangle+ACB%2B%5Cangle+NAC%5C%5C%26%3D%5Cangle+ANM+%5Cend%7Baligned%7D

equation?tex=l 为圆
equation?tex=AMN 切线,从而两圆相切,
equation?tex=O_1
equation?tex=O_2
equation?tex=A 共线.
equation?tex=%5Csquare

证法3

作圆

equation?tex=ABC
equation?tex=AMN ,延长
equation?tex=AM
equation?tex=AN 交圆
equation?tex=ABC
equation?tex=P
equation?tex=Q

因为

equation?tex=%5Cangle+BAM%3D%5Cangle+CAN ,故
equation?tex=BP%3DCQ ,故
equation?tex=BC%5Cparallel+PQ%5Cparallel+MN .从而
equation?tex=A
equation?tex=%5Ctriangle+AMN
equation?tex=%5Ctriangle+APQ 的顺相似中心,也是两圆的外位似中心.故两圆相切,
equation?tex=O_1
equation?tex=O_2
equation?tex=A 共线.
equation?tex=%5Csquare

例3 (2013联赛)

如图,

equation?tex=AB 是圆
equation?tex=%5Comega 的一条弦,
equation?tex=P 为弧
equation?tex=AB 内一点,
equation?tex=E
equation?tex=F 为线段
equation?tex=AB 上两点,满足
equation?tex=AE%3DEF%3DFB .连接
equation?tex=PE
equation?tex=PF 并延长,与圆
equation?tex=%5Comega 分别相交于
equation?tex=C
equation?tex=D .求证:
equation?tex=EF%5Ccdot+CD%3DAC%5Ccdot+BD

fbd835ec93d1c922fcc7fd368a7189ac.png

分析

我们来看一道难一点的题.可以看出,本题也是一道对称性问题(关于

equation?tex=A
equation?tex=B ),其中只有
equation?tex=P 是不动点.为此,我们来考虑不动点的问题:按理来说,对对称性问题,我们需要考虑不变元素;然而在图中我们只能找到
equation?tex=P 这一个不动元素.怎么办呢?

我们考虑:「构造不变量」.

回到原题.我们先来逆推分析.原题的结论相当于

equation?tex=AB%5Ccdot+CD%3D3AC%5Ccdot+BD+ .观察这个结论,我们很容易想到
Ptolemy定理
equation?tex=AB%5Ccdot+CD%2BAC%5Ccdot+BD%3DAD%5Ccdot+BC+ .如果可以证明
equation?tex=AD%5Ccdot+BC%3D4AC%5Ccdot+BD+ 或者
equation?tex=AD%5Ccdot+BC%3D4EF%5Ccdot+CD+ 该很好;可是问题是,怎么证呢?

回忆我们刚刚说过的「构造不变量」.对于「

equation?tex=4 」这个数字,我们想到构造两个中点——
equation?tex=AD 的中点和
equation?tex=BC 的中点.现在只需要找到一组比例就好了.而且经过探究,我们发现:
equation?tex=M
equation?tex=N 也是互换的.对它们的性质,有没有什么好的方法呢?

看来不动点这招是用不了了.我们来看看:不变性质上有没有突破.

证明

如图,取

equation?tex=AD
equation?tex=BC 的中点
equation?tex=M
equation?tex=N

688d9bab163ad42a790b484b4342ab52.png

由三等分点,易知

equation?tex=%5Cangle+FNB%3D%5Cangle+ECB%3D%5Cangle+PDB%3D%5Cangle+FDB+ ,所以
equation?tex=F
equation?tex=N
equation?tex=D
equation?tex=B 四点共圆.故
equation?tex=%5Cangle+AEM%3D%5Cangle+DFA%3D180%C2%B0-%5Cangle+DFB%3D180%C2%B0-%5Cangle+DNB%3D%5Cangle+CND+ .又
equation?tex=%5Cangle+MAE%3D%5Cangle+DCN+ ,故
equation?tex=%5Ctriangle+MAE%5Csim%5Ctriangle+DAN+ ,有
equation?tex=4AE%5Ccdot+CD%3D4CN%5Ccdot+AM%3DAD%5Ccdot+BC+ .故
equation?tex=4EF%5Ccdot+CD%3DAD%5Ccdot+BC+

另一方面,由 Ptolemy定理 ,可得

equation?tex=AD%5Ccdot+BC%3DAB%5Ccdot+CD%2BAC%5Ccdot+BD%3D3EF%5Ccdot+CD%2BAD%5Ccdot+BC+ .所以
equation?tex=EF%5Ccdot+CD%3DAC%5Ccdot+BD+ ,证毕!
equation?tex=%5Csquare

打破对称性

以上,我们看了一些比较简单的对称性问题,并以此为例介绍了分析对称性问题的方法.然而,并非所有对称性问题都像上面的例题那样简单——很多问题的「不变元素」很难刻画,以致不得不刻画其两边对称图形的性质.除此之外,也有文章开头所讲的那样——两部分图形中的性质却相互成充要条件,除去一些简单的结论,经常出现要证一边则需证另一边的情况,找不到解决问题的着力点——的情况出现.这样一来,我们又如何解决它呢?

通过上面的分析,这一类问题的「难点」,其本质原因在于其「对称性」——证明一个结论,需要证明其对称图形的同一结论.既然如此,我们何不尝试换种角度,绕过这一「对称性」的限制呢?

「打破对称性」方法便是这一思想的一个体现.这一方法的操作如下:

  1. 明确想要在某一半图形证明的性质(这一性质通常与另一半图形的相同性质互为充要条件);
  2. 在这一半图形中恰当地选取 幻像点 ,使之在这一半图形中符合欲证结论;
  3. 尝试证明这一 幻像点 与我们需要的点是同一点.

也就是说,它的本质是「同一法」策略,尝试进行一种「非对称式」构造.可能看着不太优美,但出于解决问题的方便性,为什么不用呢?

例4 (Mannheim定理)

如图,三角形

equation?tex=ABC 中,一个圆同时与
equation?tex=AB
equation?tex=AC 和点
equation?tex=A 所对的弧
equation?tex=BC 相切,前两者的切点为
equation?tex=D
equation?tex=E .求证:
equation?tex=%5Ctriangle+ABC 的内心
equation?tex=I
equation?tex=DE 的中点.

ceef86ef86ecfc450ed366e11c22a454.png

分析

我们从一个熟知的定理开始吧.这个与伪圆有关的定理,相信对于学习竞赛的你早就已经熟悉了.然而,问题是,怎么证呢?

观察图形.我们发现,原题恰好是一个对称性问题,其中II是不动点,它的性质也就是我们最关注的东西.另外,对于两圆相切类问题,首要的当然是做出它们的切点

equation?tex=T .作出这个点,我们会发现什么呢?

——通过精确作图,我们会发现:

equation?tex=TIEC
equation?tex=TIDB 分别四点共圆!

我们目前不知道这一性质有何作用,因此先放一放.现在我们来顺推一下:

首先,我们看到

equation?tex=AB
equation?tex=AC 是切线,结合两圆相切,我们很容易想到一个熟知结论:
equation?tex=%5Cangle+ATE%3D%5Cangle+ETC+
equation?tex=%5Cangle+ATD%3D%5Cangle+DTB+ .但这一结论有没有用呢?回忆内心是三角形三条角平分线的交点,我们的直觉是——这一性质肯定有用!

现在我们假设已经证出了以上两个性质.现在看看能不能只用这两个性质导出原题——可以看出,这一方法确实可证!

于是现在,我们只需要证上面的一组共圆即可.然而,当我们在尝试时,就会尴尬地发现:证不出来……

事实是,如果要证其中的一组共圆,我们就需要一个角的关系,而导出这个角的关系恰需要另一组共圆.结合这两组共圆的地位是平等的,这一结论实际上意味着——我们要用这个共圆来证这个共圆……

死胡同了?不,换个视角,我们就能绝处逢生.

正如上面所说,证明这组共圆的主要问题是:我们需要用另一组共圆来证,因此有一个循环论证的问题.但是,我们「假装」已经证出了这组共圆,则另一组共圆也就可以证出来了.因此,如果我们从同一法角度考虑,用这组共圆来刻画这个点,先把另一组共圆推出来,最后再来证这两个点重合,不就证出了这个性质?

好耶,就这么干!

证明

用同一法.记

equation?tex=T 为两圆切点,设
equation?tex=I
equation?tex=DE 与圆
equation?tex=ECT 交点,延长
equation?tex=TE
equation?tex=TD 交圆
equation?tex=ABC
equation?tex=F
equation?tex=G

dd9626167939f313449d508369acd192.png

于是

equation?tex=%5Cangle+DIT%3D%5Cangle+ECT+ .另一方面,由切线知
equation?tex=%5Cangle+TDI%3D%5Cangle+TEC+ ,故
equation?tex=%5Ctriangle+DTI%5Csim%5Ctriangle+ETC+
equation?tex=%5Cangle+DTI%3D%5Cangle+ETC+ .另一方面,由熟知结论知
equation?tex=%5Cangle+ATE%3D%5Cangle+CTE+ ,故
equation?tex=%5Cangle+ATE%3D%5Cangle+DTI+
equation?tex=%5Cangle+ATD%3D%5Cangle+ITE+

又由熟知结论知

equation?tex=%5Cangle+ATD%3D%5Cangle+DTB+ ,故
equation?tex=%5Cangle+BTD%3D%5Cangle+ITE+ .结合切线知
equation?tex=%5Cangle+BDT%3D%5Cangle+TEI+ ,故
equation?tex=%5Ctriangle+BTD%5Csim%5Ctriangle+ITE+
equation?tex=%5Cangle+DBT%3D%5Cangle+EIT+ ,从而
equation?tex=B
equation?tex=D
equation?tex=I
equation?tex=T 共圆.

现在,由于

equation?tex=%5C%5C+%5Cangle+ABI%3D%5Cangle+DTI%3D%5Cangle+ETC%3D%5Cangle+ATF%3D%5Cangle+ABF+

equation?tex=%5C%5C+%5Cangle+ACI%3D%5Cangle+ETI%3D%5Cangle+DTB%3D%5Cangle+ATG%3D%5Cangle+ACG+

可得

equation?tex=B
equation?tex=I
equation?tex=F
equation?tex=C
equation?tex=I
equation?tex=G 分别共线,很容易发现这两条直线都是角平分线.故
equation?tex=I 是内心,且对等腰三角形
equation?tex=ADE
equation?tex=ID%3DIE
equation?tex=%5Csquare

分析2

当然,对于这道对称性问题,首要的还是想直接找出这个

equation?tex=I+ 的性质.如果能直接同时推出两组共线,当然最好了.可是,怎么推呢?

证明2

equation?tex=F
equation?tex=G 同上.对圆内接六边形
equation?tex=ABFTGC 运用
Pascal定理 即证.
equation?tex=%5Csquare

例5 (爱尖子)

如图,四边形

equation?tex=ABCD 内接于圆
equation?tex=O
equation?tex=AB%3ECD
equation?tex=AB%2BCD%3DBC
equation?tex=P 为弧
equation?tex=AD 的中点,
equation?tex=PB
equation?tex=AC 交于
equation?tex=E
equation?tex=PC
equation?tex=BD 交于
equation?tex=F .求证:
equation?tex=EF%3DAE%2BDF

375e00dd901ce44cb7d97866a59b51d5.png

分析

很容易发现该题也是一道对称性问题,唯一的不动点是

equation?tex=P .问题是:
equation?tex=EF%3DAE%2BDF
equation?tex=BC%3DAB%2BCD 怎么用呢?

当然,对于条件,在

equation?tex=BC 上取点
equation?tex=M 使
equation?tex=BM%3DBA 似乎势在必行.对结论,在
equation?tex=EF 上取点
equation?tex=N 使
equation?tex=EN%3DEA 似乎也很显然.但是,这两个点怎么刻画呢?

——毕竟,它们是「不动点」.

我们尝试连接这两个点,发现:这根连线过

equation?tex=AC
equation?tex=BD 的交点!

因此,我们把这个点(就

equation?tex=R 吧)点出来,用
equation?tex=MR+ 定出
equation?tex=N .然而推到后来,会发现也会出现一边推另一边的问题.对此,我们该怎么办呢?

证明

本题比较简单,证明我就不放了.相信看了上面的一题,你也能很快证出来!


很多问题比较复杂,需要综合运用两种技巧(「构造不变量」和「打破对称性」).我们来看一道例题:

例6 (爱尖子)

如图,

equation?tex=%5Ctriangle+ABC 中,
equation?tex=AB%5Cneq+AC
equation?tex=O 为外心,在
equation?tex=AB 上取点
equation?tex=P 使
equation?tex=%5Cangle+BOP%3D%5Cangle+ABC+ ,在
equation?tex=AC 上取点
equation?tex=Q 使
equation?tex=%5Cangle+COQ%3D%5Cangle+ACB+ .证明:
equation?tex=BC 关于
equation?tex=PQ 的对称直线与
equation?tex=%5Ctriangle+APQ 的外接圆相切.

73285d3cf0160f4280035cfaa93b90c1.png

分析

本题的题设一看就不容易www

很显然本题也是对称性问题,并且不动点只有

equation?tex=O ,看上去是要构造不变量了.问题是,怎么构造呢?

我们还是先把题设要求的「对称直线」作出来吧,顺带切点也给作了.这就要求我们作出

equation?tex=PQ
equation?tex=BC 的交点:

400b56797aece2eb270c9441617f09e7.png

现在,我们作出了交点

equation?tex=D 、切点
equation?tex=E .看上去这两个点都是不动点,问题是,哪个更重要?

当然是切点啦.先不管我们一开始无法说「切点」的困难,我们先来看看这个切点有什么性质.问题是,到底有什么性质呢?

我们随便拉几个圆,看看:

10107e5171c5c47d2f94deaac61f78a8.png

原来有这么多共圆!

由此可见,切点的性质是极其重要的了.为此,如何刻画

equation?tex=E 就是个问题了,圆
equation?tex=APQ 与圆
equation?tex=ABC 的交点可能可以——而且这也提示我们用到
Spiral Similarity (中文忘了,似乎是叫旋转型相似?)这个重要的性质.我们再拿尺子量一量,可以发现
equation?tex=QE%3DQC
equation?tex=PE%3DPB 这两个性质,事实上有了共圆这就是显然的了,所以最重要的还是那两对共圆.问题是,我们要如何推出呢?

直接推?试一下,发现不是太行,会出现像之前一样的问题(一边推另一边).所以,我们尝试对

equation?tex=E 打破对称性.

来吧,上同一!

证明

(直接上图了,知乎的公式编辑器用着太难受了QAQ)

e169857aba96e7f52ef10374339012e6.png

(不清晰的话可以看这里:【平面几何】 浅谈平面几何中的「对称性分析」 | 霜夏酱の小屋 (frigus27.xyz))

怎么样,是不是也有想试一试的冲动?(被打


后记

以上,就是对称性问题的一些结论了,差不多就这样吧(

话说回来,这还是我第一次投出研究性的文章呢……

其实早就想写这篇文章了,大概初三时见了许多这样的一个问题,大概有了自己的一套解题思路,于是就想着写下这篇文章.可是,想了很久,最后直到高一才写出来.这篇文章写了断断续续有一个月了吧,也算费了不少时间.

后来,我与 @Dolphin 大佬讨论了一下,感觉在「对称性」的概念这方面还有可商榷之处.Dolphin大佬提出了这样的观点:在本文中定义的「对称性」,事实上与图论中的自对应有关.对文中的「交换变换」,他也提出了很多概念,让我大开眼界.也许后面我们会合著一篇文章,探讨下这个「对称性」的本质是什么.

在这里,特别感谢 @Dolphin,在文章的最终定稿阶段,他帮了我许多!

另外,也感谢每一位读者,您能用心读到这里,实属不易(

既然这样……

夏夏能厚颜无耻地求个赞吗QAQ(被打

练习

  1. 完成文章中所有未给出解答的例题的证明;
  2. 证明 Brocard 定理:四边形
    equation?tex=ABCD 内接于圆
    equation?tex=O
    equation?tex=AB
    equation?tex=CD
    equation?tex=P
    equation?tex=AD
    equation?tex=BC
    equation?tex=Q
    equation?tex=AC
    equation?tex=BD
    equation?tex=R .求证:
    equation?tex=OR%5Cbot+PQ
  3. 试证明 Mannheim定理 的两个重要推广: Thébault定理沢山引理
  4. 锐角
    equation?tex=%5Ctriangle+ABC 中,
    equation?tex=AB%3EAC
    equation?tex=P
    equation?tex=Q 分别为
    equation?tex=AB
    equation?tex=AC 上的点,满足
    equation?tex=PQ%5Cparallel+BC
    equation?tex=CP+
    equation?tex=BQ
    equation?tex=O
    equation?tex=A关于
    equation?tex=BC 的对称点为
    equation?tex=A%27
    equation?tex=A%27O 交圆
    equation?tex=APQ
    equation?tex=S .求证:圆
    equation?tex=BSC 与圆
    equation?tex=APQ 相切.(参考答案)
  5. equation?tex=%5Ctriangle+ABC 中,
    equation?tex=%5CGamma 为其外接圆,直线
    equation?tex=l
    equation?tex=%5CGamma 相切.求证:
    equation?tex=l 关于
    equation?tex=%5Ctriangle+ABC 中各边的对称直线,两两相交形成的交点构成的三角形,其外接圆与
    equation?tex=%5CGamma 相切.(参考答案 pdf第61页)

一点吐槽

早就听很多大佬说知乎的公式编辑器难用了,以前也没太在意,直到现在自己写博客了才发现MathJax内联公式是真的香,唉~

所以,强烈要求知乎出内联公式!出displaymath!用[]()$$`写latex!

另外,欢迎大家来我的博客坐坐呀~

https://frigus27.xyz/​frigus27.xyz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值