tpcc-mysql的业务逻辑及其相关的几个表作用如下:
New-Order:新订单,主要对应 new_orders 表
Payment:支付,主要对应 orders、history 表
Order-Status:订单状态,主要对应 orders、order_line 表
Delivery:发货,主要对应 order_line 表
Stock-Level:库存,主要对应 stock 表
其他相关表:
客户:主要对应 customer 表
地区:主要对应 district 表
商品:主要对应 item 表
仓库:主要对应 warehouse 表
二、编译安装
编译非常简单,只需要一个 make 即可。
cd /tmp/tpcc-mysql/src
make
如果 make 没有报错,就会在 /tmp/tpcc-mysql 下生成 tpcc 二进制命令行工具 tpcc_load 、 tpcc_start
Build binaries
cd scr ; make ( you should have mysql_config available in $PATH)
Load data
create database mysqladmin create tpcc1000
create tables mysql tpcc1000 < create_table.sql
create indexes and FK ( this step can be done after loading data) mysql tpcc1000 < add_fkey_idx.sql
populate data
simple step tpcc_load -h127.0.0.1 -d tpcc1000 -u root -p "" -w 1000 |hostname:port| |dbname| |user| |password| |WAREHOUSES| ref. tpcc_load --help for all options
load data in parallel check load.sh script
start benchmark
./tpcc_start -h127.0.0.1 -P3306 -dtpcc1000 -uroot -w1000 -c32 -r10 -l10800
|hostname| |port| |dbname| |user| |WAREHOUSES| |CONNECTIONS| |WARMUP TIME| |BENCHMARK TIME|
ref. tpcc_start --help for all options
三、TPCC测试前准备
初始化测试库环境
cd /tmp/tpcc-mysql
mysqladmin create tpcc1000
mysql -f tpcc1000 < create_table.sql
初始化完毕后,就可以开始加载测试数据了
tpcc_load用法如下:
tpcc_load [server] [DB] [user] [pass] [warehouse]
或者
tpcc_load [server] [DB] [user] [pass] [warehouse] [part] [min_wh] [max_wh]
选项 warehouse 意为指定测试库下的仓库数量。
真实测试场景中,仓库数一般不建议少于 100个,视服务器硬件配置而定,如果是配备了SSD或者PCIE SSD这种高IOPS设备的话,建议最少不低于 1000个。
执行下面的命令,开始灌入测试数据:
cd /tmp/tpcc-mysql
./tpcc_load localhost tpcc1000 tpcc_user "tpcc_password" 1000
在这里,需要注意的是 tpcc 默认会读取 /var/lib/mysql/mysql.sock 这个socket 文件。
因此,如果你的 socket 文件不在相应路径的话,可以做个软连接,或者通过TCP/IP的方式连接测试服务器,例如:
cd /tmp/tpcc-mysql
./tpcc_load 1.2.3.4:3306 tpcc1000 tpcc_user "tpcc_password" 1000
加载测试数据时长视仓库数量而定,若过程比较久需要稍加耐心等待。
四、进行TPCC测试
tpcc_start 工具用于tpcc压测,其用法如下:
tpcc_start -h server_host -P port -d database_name -u mysql_user \
-p mysql_password -w warehouses -c connections -r warmup_time \
-l running_time -i report_interval -f report_file
几个选项稍微解释下
-w 指定仓库数量
-c 指定并发连接数
-r 指定开始测试前进行warmup的时间,进行预热后,测试效果更好
-l 指定测试持续时间
-i 指定生成报告间隔时长
-f 指定生成的报告文件名
现在我们来开启一个测试案例:
tpcc_start -hlocalhost -d tpcc1000 -u tpcc_user -p "tpcc_password" \
-w 1000 -c 32 -r 120 -l 3600 \
-f tpcc_mysql_20140921.log >> tpcc_caseX_20140921.log 2>&1
即:模拟 1000个仓库规模,并发 16个线程进行测试,热身时间为 60秒, 压测时间为 1小时。
真实测试场景中,建议预热时间不小于 5分钟,持续压测时长不小于 30分钟,否则测试数据可能不具参考意义。
五、TPCC测试结果解读:
发起测试:
./tpcc_start -h 1.2.3.4 -P 3306 -d tpcc10 -u tpcc -p tpcc \
-w 10 -c 64 -r 30 -l 120 \
-f tpcclog_201409211538_64_THREADS.log >> tpcc_noaid_2_20140921_64.log 2>&1
测试结果输出如下:
-- 本轮tpcc压测的一些基本信息
***************************************
*** ###easy### TPC-C Load Generator ***
***************************************
option h with value '1.2.3.4' -- 主机
option P with value '3306' -- 端口
option d with value 'tpcc10' -- 数据库
option u with value 'tpcc' -- 账号
option p with value 'tpcc' -- 密码
option w with value '10' -- 仓库数
option c with value '64' -- 并发线程数
option r with value '30' -- 数据预热时长
option l with value '120' -- 压测时长
option f with value 'tpcclog_20140921_64_THREADS.res' -- 输出报告日志文件
[server]: 1.2.3.4
[port]: 3306
[DBname]: tpcc10
[user]: tpcc
[pass]: tpcc
[warehouse]: 10
[connection]: 64
[rampup]: 30 (sec.)
[measure]: 120 (sec.)
RAMP-UP TIME.(30 sec.)
-- 预热结束,开始进行压测
MEASURING START.
-- 每10秒钟输出一次压测数据
10, 8376(0):2.744|3.211, 8374(0):0.523|1.626, 838(0):0.250|0.305, 837(0):3.241|3.518, 839(0):9.086|10.676
20, 8294(0):2.175|2.327, 8292(0):0.420|0.495, 829(0):0.206|0.243, 827(0):2.489|2.593, 827(0):7.214|7.646
…
110, 8800(0):2.149|2.458, 8792(0):0.424|0.710, 879(0):0.207|0.244, 878(0):2.461|2.556, 878(0):7.042|7.341
120, 8819(0):2.147|2.327, 8820(0):0.424|0.568, 882(0):0.208|0.237, 881(0):2.483|2.561, 883(0):7.025|7.405
-- 以逗号分隔,共6列
-- 第一列,第N次10秒
-- 第二列,总成功执行压测的次数(总推迟执行压测的次数):90%事务的响应时间|本轮测试最大响应时间
-- 第三列,新订单业务成功执行次数(推迟执行次数):90%事务的响应时间|本轮测试最大响应时间
-- 第四列,支付业务的结果,后面几个的意义同上
-- 第五列,发货业务的结果,后面几个的意义同上
-- 第六列,库存业务的结果,后面几个的意义同上
-- 压测结束
STOPPING THREADS................................................................
-- 第一次粗略结果统计
[0] sc:100589 lt:0 rt:0 fl:0 -- New-Order,新订单业务成功(success,简写sc)次数,延迟(late,简写lt)次数,重试(retry,简写rt)次数,失败(failure,简写fl)次数
[1] sc:100552 lt:0 rt:0 fl:0 -- Payment,支付业务统计,其他同上
[2] sc:10059 lt:0 rt:0 fl:0 -- Order-Status,订单状态业务统计,其他同上
[3] sc:10057 lt:0 rt:0 fl:0 -- Delivery,发货业务统计,其他同上
[4] sc:10058 lt:0 rt:0 fl:0 -- Stock-Level,库存业务统计,其他同上
in 120 sec.
-- 第二次粗略统计结果,其他同上
[0] sc:100590 lt:0 rt:0 fl:0
[1] sc:100582 lt:0 rt:0 fl:0
[2] sc:10059 lt:0 rt:0 fl:0
[3] sc:10057 lt:0 rt:0 fl:0
[4] sc:10059 lt:0 rt:0 fl:0
(all must be [OK]) -- 下面所有业务逻辑结果都必须为 OK 才行
[transaction percentage]
Payment: 43.47% (>=43.0%) [OK] -- 支付成功次数(上述统计结果中 sc + lt)必须大于43.0%,否则结果为NG,而不是OK
Order-Status: 4.35% (>= 4.0%) [OK] -- 订单状态,其他同上
Delivery: 4.35% (>= 4.0%) [OK] -- 发货,其他同上
Stock-Level: 4.35% (>= 4.0%) [OK] -- 库存,其他同上
[response time (at least 90% passed)] -- 响应耗时指标必须超过90%通过才行
New-Order: 100.00% [OK] -- 下面几个响应耗时指标全部 100% 通过
Payment: 100.00% [OK]
Order-Status: 100.00% [OK]
Delivery: 100.00% [OK]
Stock-Level: 100.00% [OK]
50294.500 TpmC -- TpmC结果值
script目录下的一些脚本主要是一些性能数据采集以及分析的,可以自行摸索下怎么用