
“小数连心”,本着“相互交流、共同进步”的原则,公众号将推出学员的阅读感悟、教学心得、教学研究、教育叙事等优秀作品,搭建交流平台,共享研究成果。
公众号在每月5、15、25日固定日推送,其他时间不定期推送,欢迎关注。


人物简介

王智慧
龙湾区第一小学二级教师,龙湾区教学新苗。
教学设计
教学内容
人教版四年级上册第五单元复习课
教材分析
《平行四边形与梯形》这个单元是在学生认识了直线、线段、射线的特点,初步认识了平行四边形,学习了角的度量的基础上教学的。本单元的教学内容中有很多几何概念,还涉及许多作图的内容,如画垂线、画长方形(正方形)、画平行四边形和梯形的高等。这些知识看似不难,但出题灵活,对于学生的记忆、认知、动手操作能力要求都比较高。练习中,发现学生对于这个单元知识的认知是零散的,从而出现作业的错误率比较高。借平日里收集的错题进行前测,找到易错点和模糊点。情况如下:

教学思考
思考1:复习如何由“面”到“点”?
本堂课内容较多,面面俱到的讲授时间不允许,效果也不佳。我们想让学生在有限的活跃时间内重点讲解,就得紧扣学情。课前,收集学生作业和练习中的易错题,设计前测学习单。分析前测单发现主要问题,在练习环节中设计有针对性的练习,在课堂上针对错误率较的问题进行探讨交流,从而实现查漏补缺。
思考2:复习如何由“静”到“活”?
复习课和练习课不应该只以做题为主。几何教学中也不能只关注单独图形概念和静态图形知识,忽视了图形的动态转化。这节课中我尝试在基础知识落地的情况下创造学生积极想象,参与讨论,动手操作的机会,让图形跳跃起来,玩起来。
教学目标及重难点
1. 经历画点子图,寻找错误原因的过程,对易错点进行归纳分析,加深平行和垂直的理解,熟练掌握平行四边形和梯形的特征,将这两个知识板块沟通联系。
2. 在解决问题过程中,由单一到综合,加强图形之间内在联系,体会垂线在生活中的应用。
3. 通过动态研究图形的边和角,多种角度感知图形,发展空间观念。
【教学重点】从点—线—面脉络出发,理解平行垂直,掌握图形的特征并综合应用。
【教学难点】研究图形的边和角中进行数学化思考,发展空间能力。
教学过程
活动一:画图整理,形成知识网络
(一)谈话引入:回想一下,这个单元我们都学习了哪些知识?
(二)任务导学
上课前每位同学都将这个单元自己印象最深刻的一个知识点画在点子图上了。
现在请小组内相互展示你的作品。
1.分一分:哪些知识点可以归为一类?
2.说一说:你们所画的知识点之间有什么联系。
(三)交流展示,错题重现:


(四)板贴整理,进行知识关联,最终形成单元知识网络图。

活动二:用图解决,盘活知识内储
(一)请给你在平行四边形上画两条不同的高。
1.学生独立画一画。

2.讨论:什么是不同的高? 长度一样吗?
过平行四边形一条边上不同点作对边的垂线。长度争论有的认为不一样,有的认为一样。
3.展示画法,观察找发现
(1)第一幅图,这两条高,你有什么发现吗?(以同一边为底)
引导学生发现:同一条底上的高的长度相同。
(2)第二幅图,这两条高呢?(不同底,长度不同)出示菱形,现在呢?
总结:原来在平行四边形中,在不同底上作高,高的长度可能不同的。
(二)在小区门口一块梯形空地,为了美化环境,居委会决定在这块空地上建造一个平行四边形的草坪。怎么建能使草坪最大?请你在图中画一画。

师生讨论:
1. 怎么让梯形变成平行四边形?
(只要改变一条腰,使两条腰线段平行,就能建造出一个平行四边形。)
2. 梯形上底和下底的长度不一致,怎么办呢?
(选择上底的长度,选择下底的话会超出这个草坪的范围。)
3.长方形是特殊的平行四边形,设计成长方形是否可以?
(三)为了方便出行,居委会还决定在这个草坪上修建一条小路,怎么建对这个草坪的伤害最小?请你利用我们学过的知识试一试。
分享:1.根据直线外一点到直线的垂直线段最短,设计一条垂直于上底和下底的线段。
2.为了不破坏草坪迂回路线。
思维碰撞:还可以怎么画图吗?哪条线段最短?(平行线之间的距离处处相等,所以这些小路的长度是一样的。)
像这样的小路还有几条?(无数条)
活动三:玩图研究,深化空间能力
(一)研究边
过渡:接下来我们玩一玩图形。平行四边形由四条边和四个角组成,那么边我们可以怎么玩?
1.移
(1)想象:点B往左移,会出现什么图形?

(2)点B在移动到A的过程中,除了三角形,为什么都是梯形和平行四边形?(在移动中保持了一组对边平行。另一组对边平行时就是平行四边形,不平行时就是梯形。)
(3)在移动图形变化中,什么一直保持不变?(高)高在哪里?(AB和CD之间的距离)
2.剪
(1)在平行四边形中添上一条线段,把它分割成两个完全相同的图形。
请先想象一下,你会怎么画线段,会分成什么图形。
有想法的学生直接板演。

(2)看到这些分割的结果,你有什么发现?
(1个平行四边形可以分成2个完全相同的三角形、平行四边形或梯形。)
(3)想一想,是不是随便画一条线段,一定能分出两个完全相同的图形?
先独立思考,找到中心点的感觉。
课件展示:将以上6幅图重叠,发现:过中心点任意一条直线都能将平行四边形分成完全相同的两个图形。
(二)研究角
1. 外角和
(1)介绍内角和外角
课件展示正方形的内角。由内角你会想到什么?(外角)
通常我们把每条边的延长线与邻边组成的角看作外角。(课件图形外角)
(2)正方形的外角和是多少度?你是怎么思考的?
由内角90°得出:正方形外角和=90°×4=360°
(3)出示平行四边形,猜一猜,他的外角和是多少呢?
预设:与学生猜360°,也有学生通过提前学习的内角和的平角的知识来解决外角和的计算。
(4)观看小火车的游戏介绍平行四边形的外角和是360°的原因。
(小火车每经过一个顶点都旋转一个外角,回到出发时状态总共转了一圈也就是360°)
(5)用这种方法去研究多边形的外角和会发生什么有趣的事情呢?
(都转一圈,是360°)
2. 内角和
内角和会有这样有趣的事情吗?下课后同学们一起来量一量,算一算。

活动四:看图回顾,内化知识
出示课件知识图片,静静回想,这节课你学到了什么?
教学反思
1.基于学情,构建知识。
通过平日的错题收集,课前的知识检测和课中的谈话回顾,充分了解学生对本单元的基本情况。在此基础上展开教学更加“掷地有声”。在平日的练习中就能发现学生对已有知识的记忆更多的是独立的,分散的。画平行线垂线,认识平行四边形和梯形,画高等知识单独一块都会做,但综合应用就不太精准了。所以复习课以学生元认知为基础,通过独立画知识点,合作交流到小组反馈梳理知识,感受从点连线,线练面过程中知识的纵横联系。
2.基于问题,盘活知识。
通过前测发现学生知识漏洞,在梳理知识过程中将问题展示重新思考分析,帮助学生查补知识短板,纠正对知识的错误或不够完善的理解,丰富知识内储。再解决生活实际问题中,强化垂线(高)的应用。综合性的解题策略会引发诸多的思路和结果,鼓励学生在讨论中不断完善思考,提升思维。
3.基于研究,激发活力。
复习课除了简单重复的知识讲解,还应该有更高阶的思维和情感的投入。在基于学情对本单元进行梳理后,给予学生时间和空间从边和角两个维度研究图形,在新的学习主题中进行深度学习。通过动态的想象,动手操作和合理猜想让学习过程更加丰富有活力。
编辑:王智慧
审核:邵崇冰

关注小数连心
龙湾小数人们的行与思
相互交流 共同进步