duffing matlab,duffing方程matlab仿真分析

41528d3028836879cd698677c3999917.gifduffing方程matlab仿真分析

- 1 -非线性电路报告Duffing 方程的 MATLAB 仿真分析班级:学号:姓名: - 2 -摘要Duffing 方程是一种重要的动力系统 [1],是反映工程物理系统中非线性现象和混沌动力学行为的极其重要的方程式。通过 Duffing 方程可以探讨铁磁谐振电路中的分岔、拟周期运动、子谐波振荡。而在非线性与混沌系统的研究中,Duffing 方程展示了丰富的混沌动力学行为。本文通过对不同情况下的 Duffing 方程进行分析,利用 MATLAB 进行仿真,从而对 Duffing 方程有进一步的了解。关键词:Duffing 方程 混沌 MATLAB 仿真1 引言最初的 Duffing 方程通过在经典动力学系统中引入一个具有摆动的非线性方程。数学上将含有自变量三次项的二阶方程称为 Duffing 方程。Duffing 方程是弱信号检测中的常用模型,他所描述的非线性系统表现出多种非线性特性,包括振荡、分岔、混沌等复杂状态。在非线性与混沌系统的研究中,Duffing 方程展示了丰富的混沌动力学行为,Duffing 方程的非线性与混沌特性得到了人们坚持不懈的研究。Duffing 方程的工程背景、Duffing 方程的混沌动力学行为的控制以及 Duffing 方程在工程物理系统中的应用,一直是人们研究与关注的复杂话题。混沌是确定性的非线性系统在一定的条件下呈现出来的貌似无序但又遵循一定规律的复杂动力学行为 [2],是一种宏观无序、微观有序的现象。混沌是自然界一种普遍存在的非线性现象,电路中的混沌实际上是在一定的参数条件下,在一些属于确定性系统的电路里产生的类似于随机响应。混沌系统对微弱信号具有极强的敏感性同时对噪声具有极大的抑制能力,它的这种性质证明了混沌系统具有可应用于小信号检测的潜力,从检测过程中分析混沌运动发生的间歇性。Duffing 方程是一个在混沌系统小信号检测中被广泛使用的一个典型的非线性方程,即存在于噪声中的信号可以被 Duffing 振子通过从混沌运动状态到周期振荡状态的改变测试出来。本文用 MATLAB 对 Duffing 方程进行模拟分析,找出系统在各种参数下的运动状态,为基于 Duffing 振子的小信号检测提供研究基础。- 3 -2 Duffing 方程的形式2.1 具体形式著名的 Duffing 方程式反映工程物理系统中非线性现象和混沌动力学定位的极为重要的方程式,典型的 Duffing 方程的具体形式为:(2-1)2(),)dxgxfttt为阻尼系数, 为含有三次方项的非线性函数, 为周期函数。通常对其(,)fxt进行如下分类:(1 )如果 满足超线性条件,即: ,则该 Duffing 方程为超线性()gx()limxg的;(2 )如果 满足次线性条件,即: ,则该 Duffing 方程为次线性的;() ()li0 x(3 )如果 满足半线性条件,即:()gx,则该 Duffing 方程为半线性的。()0limnflisupxxgDuffing 方程系统是一个典型的非线性振动系统,尽管是从简单物理模型中得出来的非线性振动模型,但是其模型具有代表性。工程实际中的许多非线性振动问题的数学模型都可以转化为该方程来研究,如船的横摇运动、结构振动、化学键的破坏等,横向波动方程的轴向张力扰动模型,转子轴承的动力学方程也与 Duffing 系统基本相似,另外 Duffing 系统也非常广泛地被应用到实际工程中,例如尖锐碰摩转子的故障检测、微弱周期信号检测、电力系统周期振荡分析、周期电路系统的模拟与控制等。关于 Duffing 系统还有许多问题尚未彻底研究清楚,如 Duffing 方程的分数谐波振动、超谐波振动、组合振动等等,而且研究结果中规律性的成果可以推广到其他类似系统。因此从某种角度来说,对非线性Duffing 系统的研究是研究许多复杂动力学系统的基础。- 4 -2.2 典型形式(2-2)23cosdxxFttt其中, 是阻尼系数, 、 为常数, 为周期驱动力, 为非线性cst 3x恢复力。为了便于分析,也可将系统描述为:(2-3)3cosdxytxFt2.3 结合电路对 Duffing 方程分析本节通过用 Duffing 方程描述一种 LC 并联铁磁混沌电路的混沌动力学行为,并进行理论分析,最终得出一些结论。电路图如图 2-1 所示。图 2-1 并联 LC 铁磁混沌振荡电路对于上述电路图,有(2-4)31()c csdutCabutR其中, 。同时,对方程进行归一化处理,令: , ,()ossmutUt tx。为了方便分析,令: , , , ,cy21aC2b1kCR2mUf。则上述方程可以改写为1R- 5 -(2-5)23cosdxdxkf为了便于仿真,将 改为 ,上式即为 。这便是t23cosdxdxkftttDuffing 方程的经典形式。3 Duffing 方程仿真及其分析MATILAB 中的 Simulink 是一个动态系统建模仿真和分析的软件包,它是一种基于MATLAB 的框图设计环境,支持线性系统和非线性系统,可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。Simulink 中包括许多实现不同功能的模块库,选择不同的模块建模就能模拟出不同的系统。利用 MATLAB 程序实现对上一章中建立的并联 LC 铁磁混沌振荡电路进行仿真,仿真结果如下。- 6 -3.1 取初值(0,0)(1 )当 =0.1, =92.825 时,其混沌奇怪吸引子如图 3-1 所示,相应的时域仿真kf如图 3-2 所示。图 3-1 状态平面的混沌奇怪吸引子LCiu图 3-2 MATLAB 仿真的 、 的波形图()LitCut注:其中红色为 ,蓝色为Ct()Lit- 7 -(2 )当 =0.1, =88 时,其混沌奇怪吸引子如图 3-3 所示,相应的时域仿真如图kf3-4 所示。图 3-3 状态平面的混沌奇怪吸引子LCiu图 3-4 MATLAB 仿真的 、 的波形图()LitCut注:其中红色为 ,蓝色为Ct()Lit- 8 -(3 )当 =0.1, =50 时,其混沌奇怪吸引子如图 3-5 所示,相应的时域仿真如图kf3-6 所示。图 3-5 状态平面的混沌奇怪吸引子LCiu图 3-6 MATLAB 仿真的 、 的波形图()LitCut注:其中红色为 ,蓝色为Ct()Lit3.2 取初值(1,0.3) ,(1 )当 =0.1, =92.985 时,其混沌奇怪吸引子如图 3-7 所示,相应的时域仿真kf如图 3-8 所示。- 9 -图 3-7 状态平面的混沌奇怪吸引子LCiu图 3-8 MATLAB 仿真的 、 的波形图()LitCut注:其中红色为 ,蓝色为Ct()Lit(2 )当 =0.1, =88 时,其混沌奇怪吸引子如图 3-9 所示,相应的时域仿真如图kf3-10 所示。- 10 -图 3-9 状态平面的混沌奇怪吸引子LCiu图 3-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值