- 博客(4750)
- 收藏
- 关注
原创 【故障检测】规范变量差异分析在过程初期故障检测中的应用附Simulink仿真
在现代工业过程向大型化、复杂化、自动化转型的背景下,设备与系统的运行状态直接决定生产安全、效率与经济效益。过程初期故障作为一类幅值低、演化缓慢、隐匿性强的异常形式,如传感器偏置斜坡变化、催化剂缓慢失活、传热结垢等,若未能及时检测,极易在长期运行中逐步恶化,引发设备停机、安全事故及巨额经济损失。传统故障检测方法对这类微小故障敏感性不足,而规范变量差异分析(CVDA)作为规范变量分析(CVA)的扩展优化方法,凭借对动态过程微小变化的精准捕捉能力,为过程初期故障检测提供了高效解决方案。
2026-01-20 14:54:14
592
原创 【故障检测】【风力涡轮机容错控制】支持向量机用于风力涡轮机的故障检测附Matlab代码、Simulink仿真
随着全球风电装机容量的持续攀升,兆瓦级风力涡轮机的可靠性要求愈发严苛。风力涡轮机作为复杂的机电一体化设备,长期运行于高空、强风、温度波动等恶劣环境,其叶片、传动系统、发电机、变流器及控制系统易发生各类故障,非计划停机将直接导致发电效率下降与运维成本激增。故障检测与容错控制作为保障机组稳定运行的核心技术,成为风电领域的研究热点。
2026-01-20 14:52:47
434
原创 【高质量高效的单像素成像】通过傅里叶频谱采集实现了单像素成像研究附Matlab代码
作为计算光学成像的核心分支,单像素成像(SPI)凭借“单像素探测器+空间光调制器”的极简硬件架构,突破了传统CCD/CMOS面阵探测器在特殊波段适配、弱光环境成像等场景的局限,而傅里叶频谱采集技术的融入,更实现了其成像质量与效率的双重跃升,为该领域的实用化发展提供了关键支撑。
2026-01-20 14:48:20
437
原创 【高创新】ASL-QPSO:改进量子粒子群自适应优化算法研究附Matlab代码
针对传统量子粒子群优化算法(QPSO)在处理复杂高维、多峰非线性优化问题时,易陷入局部最优、收敛速度与求解精度难以兼顾的核心缺陷,本文提出一种改进的量子粒子群自适应优化算法(Adaptive Sinusoidal-Levy Quantum Particle Swarm Optimization, ASL-QPSO)。该算法通过三大协同改进策略突破性能瓶颈:引入动态非线性收缩扩张因子,实现搜索阶段的自适应切换;融合动态学习惯性权重与正余弦思想,平衡全局探索与局部开发能力;
2026-01-20 14:46:37
463
原创 【概率最小均方(PLMS)自适应滤波器】PLMS对高斯和非高斯噪声具有较强的鲁棒性附Matlab代码
概率最小均方(PLMS)自适应滤波器作为自适应信号处理领域的优化算法,核心优势在于对高斯和非高斯噪声均具备较强的鲁棒性,相较传统最小均方(LMS)算法,能在复杂噪声环境中保持更优的收敛性能与稳态精度,为多领域信号处理提供可靠解决方案。PLMS自适应滤波器通过概率建模与动态分布估计的创新设计,打破了传统自适应算法对噪声类型的依赖性,实现了对高斯和非高斯噪声的双重鲁棒性。
2026-01-20 14:41:31
546
原创 【改进差分优化算法L-SHADE-SPACMA】差分进化算法(DE)及其变体L-SHADE-SPACMA在CEC2005函数寻优的对比研究附Matlab代码
为解决传统差分进化算法(DE)在复杂函数寻优中易陷入局部最优、参数敏感性强及鲁棒性不足的问题,本文以L-SHADE-SPACMA算法为研究对象,系统开展其与传统DE算法在CEC2005标准测试函数集上的寻优性能对比研究。通过理论剖析两种算法的核心机制,结合单峰、多峰、混合复合四类函数的实验验证,从平均最优适应度、收敛速度、成功率及参数敏感性等维度量化分析性能差异。
2026-01-20 14:40:27
526
原创 【改进差分优化算法L-SHADE-cnEpSin】差分进化算法(DE)及其变体L-SHADE-cnEpSin在CEC2005函数寻优的对比研究附Matlab代码
为解决传统差分进化算法(DE)在复杂函数寻优中易陷入局部最优、参数敏感性高及鲁棒性不足的问题,本文聚焦DE算法及其改进变体L-SHADE-cnEpSin,以CEC2005标准测试函数集为基准,开展系统性的寻优性能对比研究。DE算法作为经典全局优化算法,凭借结构简单、收敛快速的特性在多领域广泛应用,但固定参数设置使其在高维、多峰问题中表现受限。L-SHADE-cnEpSin在SHADE算法基础上,融合余弦惯性权重、扰动正弦函数、协同进化变异策略及非线性参数更新机制,实现全局探索与局部开发能力的动态平衡。
2026-01-20 14:39:16
352
原创 【改进差分优化算法L-SHADE】差分进化算法(DE)及其变体线性种群缩减的SHADE(L-SHADE)在CEC2005函数寻优的对比研究附Matlab代码
为解决传统差分进化算法(DE)在复杂函数寻优中存在的参数敏感性高、易早熟收敛、鲁棒性不足等问题,本文以线性种群缩减策略改进的SHADE算法(L-SHADE)为研究对象,系统对比DE与L-SHADE在CEC2005标准测试函数集上的寻优性能。CEC2005测试集包含23个涵盖单峰、多峰、混合及组合类型的函数,为算法性能评估提供了标准化基准。通过控制变量实验,从解质量、收敛速度、鲁棒性三个核心指标展开分析,验证L-SHADE算法中线性种群缩减(LPSR)与动态参数控制策略的有效性。
2026-01-20 14:37:48
220
原创 【改进差分优化算法JaDE】差分进化算法(DE)及其变体自适应权重差分进化算法(JaDE)在CEC2005函数寻优的对比研究附Matlab代码
为解决传统差分进化算法(DE)在复杂优化问题中易陷入局部最优、收敛速度慢及参数敏感性强的缺陷,本文聚焦DE算法及其代表性改进变体——自适应权重差分进化算法(JaDE),以CEC2005测试函数集为基准,开展系统性寻优性能对比研究。首先阐述DE算法的基本原理与操作流程,剖析其参数固定导致的性能瓶颈;随后深入解析JaDE算法在变异策略、参数调整及种群多样性维持方面的核心改进机制,包括自适应变异策略选择、外部档案机制及动态参数更新策略。
2026-01-20 14:36:57
601
原创 【复现】遗传算法求解分布式电源选址定容问题并考虑环境因素研究【IEEE33节点】附Matlab代码
随着能源短缺与环境污染问题日益突出,基于风、光、微型燃气轮机等的分布式电源(DG)因环境友好、调度灵活、就近供电等优势,成为电力系统转型的重要方向。然而,DG的无序接入易导致配电网潮流紊乱、电压偏移超标、网损增加等问题,其选址与定容直接决定DG效能的发挥。传统DG选址定容研究多侧重经济性目标,对环境影响的考量不足。
2026-01-20 14:33:37
610
原创 【复现】考虑泊位优化和多能协同的港口综合能源系统运行优化附Matlab代码
在全球“双碳”目标引领与港口智能化转型背景下,传统港口能源供应模式单一、泊位调度与能源消耗脱节等问题日益凸显。港口作为物流与能源流转的核心枢纽,其综合能源系统的高效运行需深度融合泊位优化与多能协同技术,通过资源动态配置实现降本增效、低碳减排的双重目标。本文基于现有研究成果与工程实践,系统阐述二者融合优化的核心逻辑、技术体系、模型构建及未来方向,为港口绿色智能发展提供理论与实践支撑。
2026-01-19 10:05:36
262
原创 【复现】基于自适应遗传算法的分布式电源优化配置[IEEE33、IEEE118节点]附Matlab代码
在全球能源转型与“双碳”目标驱动下,风能、太阳能等可再生能源主导的分布式电源(DG)凭借环境友好、调度灵活、就近供电等优势,成为推动配电网低碳化、智能化发展的核心支撑。然而,DG的规模化随机接入易导致配电网潮流分布重构,引发节点电压越限、线路网损增加、供电可靠性下降等问题。据统计,当省级电网DG渗透率超过25%时,线路过载率可上升至18%,电压不合格节点占比达12%,严重制约了DG效能的充分发挥。
2026-01-19 10:04:38
456
原创 【复现】基于双阀值区间扰动观察法与带预测模型模糊PID控制法的光伏MPPT控制仿真模型附Simulink仿真
本文旨在复现一种融合双阀值区间扰动观察法与带预测模型模糊PID控制法的光伏最大功率点跟踪(MPPT)控制仿真模型。该模型针对传统扰动观察法在最大功率点(MPP)附近振荡、响应速度与稳态精度难以兼顾,以及常规PID控制对光伏系统非线性、时变特性适应性差的问题,通过两种算法的协同优化,实现光伏系统在不同光照、温度工况下快速、稳定、高精度地跟踪最大功率输出。
2026-01-19 10:03:33
512
原创 【负荷预测】基于VMD-CNN-LSTM的负荷预测研究附Python代码
电力作为现代社会经济发展的核心能源支撑,其稳定可靠的供应直接关系到国家能源安全、产业生产效率与居民生活质量。电力负荷预测作为电力系统规划、调度与运行管理的核心基础环节,对维持电力供需平衡、优化发电机组组合、合理安排设备检修计划、降低电网运行成本及提升新能源消纳能力具有不可替代的价值。实践数据表明,负荷预测误差每降低1%,便可为电力系统节省上亿元的运行成本,尤其在新能源大规模并网、电力市场市场化改革深化的背景下,高精度负荷预测已成为保障电网安全经济运行、促进能源高效利用的关键支撑。
2026-01-19 10:02:26
761
原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiLSTM-Attention的风电功率预测研究附Matlab代码
为解决风电功率受气象因素影响呈现的强随机性、波动性问题,提升电力系统调度的可靠性与经济性,本文提出一种融合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)的深度学习模型,用于风电功率多变量输入单步预测。该模型通过CNN提取多变量数据中的局部非线性特征,借助BiLSTM捕捉时序数据的双向长期依赖关系,利用Attention机制动态聚焦关键时间步与特征信息,形成“局部特征-时序关联-关键权重”的递进式特征挖掘体系。
2026-01-19 10:00:54
688
原创 【风电场区间预测】QRBiGRU、QRBiTCN、QRCNNBiGRU、QRCNNBIGRUATTENTION、QRCNNLSTM、QRGRU、QRLSTM、QRTCN分位数回归区间预测研究
在全球能源结构向清洁能源转型的浪潮中,风力发电凭借可再生、零污染的核心优势,成为电力系统中的重要组成部分。然而,风能固有的随机性、间歇性与波动性,导致风电功率输出难以精准把控,给电力系统的安全调度、储能配置及风险管理带来严峻挑战。传统点预测方法仅能输出单一预测值,无法量化预测结果的不确定性,难以满足电力系统精细化运行的决策需求。区间预测通过输出特定置信水平下的风电功率波动范围,能够有效刻画预测不确定性,为电力调度部门提供更全面的决策依据,显著提升系统应对风电波动的能力。
2026-01-19 10:00:03
888
原创 【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究附Matlab代码
在全球能源转型与“双碳”目标驱动下,分布式能源作为清洁能源利用的核心载体,已成为配电网升级转型的重要方向。其中,分布式光伏凭借资源可再生、安装灵活等优势,装机规模持续快速增长,截至2023年,中国分布式光伏累计装机量已达10743万千瓦,占分布式电源总装机容量的比重显著提升。然而,光伏出力受光照强度、昼夜交替等自然因素影响,具有极强的间歇性与随机性,大规模接入配电网后,易导致电压波动、潮流分布紊乱、弃光率上升等问题,严重制约了光伏消纳与配电网安全稳定运行。
2026-01-19 09:57:23
602
原创 【非侵入式负载监测】低采样率电动汽车充电的无训练非侵入式负载监测附Matlab代码
非侵入式负载监测(Non-Intrusive Load Monitoring, NILM)技术由麻省理工学院研究团队于20世纪80年代提出,其核心是通过在电力总入口处采集电压、电流、功率等聚合信号,结合算法分析分解出单个电器的运行状态与能耗数据,相较于需为每个设备安装传感器的侵入式监测,具有成本低、部署简便、隐私保护性强等显著优势,已成为智能电网与智能家居领域的核心支撑技术之一。
2026-01-19 09:56:17
642
原创 【发】多跳收集-传输无线传感器网络(WSNs)中的性能增强:在窃听者和硬件噪声存在的情况下采用路径选择方法附Matlab代码
无线传感器网络(WSNs)作为由大量微型传感器节点构成的自组织网络系统,凭借其协同感知、分布式处理与多跳传输能力,已在军事侦察、环境监测、工业控制、智能交通等多个关键领域实现广泛应用。此类网络的核心优势在于能够突破单节点覆盖局限,通过多跳中继实现大范围区域的信息收集与传输,但同时也面临着能量约束、链路干扰及安全威胁等多重挑战。在实际部署场景中,WSNs节点往往难以进行电池更换或充电,能量效率成为决定网络生命周期的核心指标。
2026-01-19 09:51:40
771
原创 【二维稳态热传导偏微分方程、用于求解具有指定边界温度的方形壁中各个节点的温度值】采用高斯-塞德尔迭代法计算节点温度研究附Matlab代码
在工程热物理、建筑节能、电子设备散热等领域,二维稳态热传导问题是一类常见的核心问题。例如,方形墙体的热量传递、集成电路芯片的稳态温度分布、工业炉体壁面的热传导过程等,均可以抽象为二维稳态热传导模型。准确求解方形壁内各节点的温度值,对优化结构设计、控制热损失、保障设备稳定运行具有重要的工程价值。二维稳态热传导问题的控制方程为偏微分方程,其解析解仅适用于边界条件简单、几何形状规则的场景。对于实际工程中复杂的边界条件(如指定边界温度、热流密度等),数值解法成为主流手段。
2026-01-19 09:50:42
631
原创 【多智能体在城市环境中的追踪】城市环境中多智能体对流氓智能体的追踪研究附Matlab代码
随着人工智能与自主系统技术的飞速发展,多智能体系统在智慧城市安防、无人系统监控、公共安全保障等领域的应用日益广泛。城市环境作为典型的动态复杂场景,包含密集建筑遮挡、多变交通流、光照条件波动、道路网络拓扑复杂等特征,给目标追踪任务带来天然挑战。流氓智能体作为具备自主决策能力、可能规避追踪、传播虚假信息或实施破坏行为的异常目标,其在城市中的隐蔽移动进一步加剧了追踪难度——与常规目标不同,流氓智能体可突破交通规则约束、主动干扰传感器感知、动态调整移动策略以摆脱追踪,对城市公共安全构成严重威胁。
2026-01-18 10:16:46
916
原创 【多智能体博弈】拦截失控机器人:一种用于多追捕者捕获多个逃逸者的算法附Matlab代码
针对智能机器人应用普及背景下的失控安全风险,本文提出一种基于多智能体博弈的拦截算法,实现多个追捕者对多个逃逸者的高效协同捕获。该算法采用“全局策略指导-分布式执行”双层架构,突破传统算法在维度适应性、协同机制与鲁棒性上的局限,可扩展至N维空间环境,仅依赖局部感知与通信即可完成全局追捕任务。通过动态Voronoi镶嵌实现追捕责任区域实时划分,结合区域最小化策略生成追捕目标,设计分布式控制律保证有限时间内捕获所有逃逸者。
2026-01-18 10:15:46
220
原创 【多源数据融合】基于Dempster-Shafer理论的信念对数相似度测量及其在多源数据融合中的应用附Matlab代码
多源数据融合技术作为整合异构信息、提升决策可靠性的核心手段,在自动驾驶、故障诊断、遥感监测等领域具有不可替代的作用。然而,多源数据普遍存在不确定性、不一致性及冗余性,传统融合方法难以精准处理此类问题。Dempster-Shafer(D-S)证据理论为不确定信息处理提供了灵活的数学框架,但其传统组合规则在面对高度冲突证据时易产生反直觉结果。
2026-01-18 10:14:41
784
原创 【多旋翼无人机】基于人工势场法进行改进,加入引力势和斥力势函数的多旋翼无人机路径跟踪控制研究附Matlab代码
随着无人机技术的飞速发展,多旋翼无人机凭借其机动性强、操作灵活、可垂直起降等优势,已广泛应用于电力巡检、物流配送、农业植保、应急救援等多个领域。路径跟踪控制作为无人机自主飞行的核心技术,直接决定了无人机执行任务的精度、安全性与可靠性。在复杂动态环境中,无人机需同时实现对预设路径的精准跟踪与对障碍物的实时避障,这对路径跟踪控制算法提出了严苛要求。人工势场法(Artificial Potential Field, APF)因原理简洁、计算效率高、实时响应性好等特点,在无人机路径规划与跟踪领域得到了广泛应用。
2026-01-18 10:13:19
625
原创 【多旋翼无人机】多旋翼无人机侧向飞行轨迹优化研究附Matlab代码
随着无人机技术的迅猛迭代,多旋翼无人机凭借垂直起降、悬停稳定、操控灵活及成本可控等核心优势,已在航拍测绘、物流配送、农业植保、电力巡检、应急救援等众多领域实现规模化应用。在实际任务执行过程中,侧向飞行作为无人机重要的机动模式,广泛应用于横向避障、狭窄通道穿越、行间作业调整等场景。
2026-01-18 10:12:00
597
原创 【多无人机追捕-逃逸】平面中多追捕者保证实现的分散式追捕-逃逸策略研究附Matlab代码
多无人机协同追捕-逃逸问题是多智能体动态博弈领域的核心研究方向,在军事防御、边境巡逻、灾难救援、敏感区域安防等场景中具有重要应用价值。传统集中式追捕策略依赖全局信息感知与统一决策调度,虽能实现一定程度的协同,但存在通信延迟、单点故障、抗干扰能力弱等固有缺陷,难以适配复杂动态环境的实际需求。分散式策略通过赋予每架追捕无人机局部感知与自主决策能力,仅依靠邻域信息实现协同追捕,有效弥补了集中式策略的不足,显著提升了系统的鲁棒性、可扩展性与环境适应性。
2026-01-18 10:11:00
874
原创 【多无人机协同目标运输任务】多无人机协同目标运输任务中的路径规划与动态控制研究附Matlab代码
随着无人机技术与群体智能的快速发展,多无人机协同目标运输凭借其高效性、灵活性和容错性,在应急救援、物流配送、基础设施建设等领域展现出广阔应用前景。与单机运输相比,多无人机协同模式可通过任务分工与资源互补,提升载重能力、缩短运输时间、增强复杂环境适应性,例如在灾害救援场景中,能快速搭建临时运输通道,将救援物资精准送达传统运输工具难以抵达的区域,使搜救物资投放效率较传统方法提升3倍以上。然而,多无人机协同运输面临路径规划与动态控制的双重挑战。
2026-01-18 10:10:05
648
原创 【多无人机协同路径规划】基于PWLCM混沌映射的部落竞争与成员合作算法的多无人机协同路径规划研究附Matlab代码
随着无人机技术的飞速发展,多无人机协同作业已成为物流配送、应急救援、巡检监测、低空作战等领域的核心应用模式,其通过多机协同配合可大幅提升任务效率、覆盖范围与容错能力。多无人机协同路径规划作为核心技术瓶颈,需同时满足路径最短化、能耗最低化、避障安全性、协同无冲突四大核心目标,且需适配多起点多终点、动态障碍物、无人机数量动态调整等复杂场景需求。传统路径规划算法(如A*、Dijkstra)仅能优化单一目标,难以应对多目标耦合约束;
2026-01-18 10:05:53
647
原创 【多无人机协同持久区域监测性能评估】【使用多无人机进行持久区域监测时保障服务质量】实现不同规模区域(AoI)下多无人机协同任务的性能评估研究附Matlab代码
本研究聚焦于不同规模区域(Area of Interest, AoI)场景下,多无人机协同执行持久区域监测任务的性能评估体系构建与实践验证。核心目标包括:明确不同AoI规模对多无人机协同策略的适配需求,建立科学、全面的性能评估指标体系,量化分析协同任务中的服务质量保障能力,为多无人机协同持久监测系统的优化设计、策略调整及工程应用提供理论支撑与数据依据,最终实现不同规模区域下监测任务的高效、稳定、高质量完成。
2026-01-18 10:04:46
493
原创 【多无人机路径规划】基于K均值聚类与遗传算法的无人机路径规划,对任务区域进行划分,并优化每个区域内的访问路径研究附Matlab代码
随着无人机技术的飞速发展,多无人机协同作业在航拍测绘、应急救援、物流配送、农业植保等领域的应用愈发广泛。路径规划作为多无人机协同作业的核心关键技术,直接决定了作业效率、能耗成本、任务完成质量及无人机飞行安全性。传统单无人机路径规划方法难以适配多无人机场景下的任务区域复杂性、任务点密集性及协同约束需求,易出现路径重叠、资源浪费、任务耗时过长等问题。针对上述问题,提出一种融合K均值聚类与遗传算法的多无人机路径规划方案。
2026-01-18 10:03:07
467
原创 【多无人机】面向城市空中交通的多无人机路径规划研究附Matlab代码
随着城市化进程加速,地面交通拥堵、地下空间开发受限等问题日益突出,开发低空资源、构建城市空中交通(UAM)系统已成为破解城市交通困境的前沿方向。城市空中交通以垂直起降飞行器、无人机为核心载体,涵盖载人出行、物流配送、应急救援等多元场景,可将点到点旅行时间缩短30%-50%,为城市交通体系注入革命性活力。
2026-01-17 20:47:51
776
原创 【多无人机】面向并行数据采集的多无人机粗粒度闭环轨迹设计无人机检测研究附Matlab代码
随着无人机技术的快速迭代与集群协同能力的提升,多无人机并行数据采集已在农业监测、灾害评估、环境感知、城市测绘等领域展现出显著应用价值。相较于单无人机作业,多无人机协同能够通过区域分片、任务并行的方式大幅提升数据采集效率,突破单设备续航与覆盖范围的局限。然而,复杂动态环境(如未知障碍物、通信干扰、气流扰动)、多机协同冲突、能量消耗约束及数据采集精度要求等多重挑战,对无人机轨迹规划的鲁棒性、高效性与闭环可控性提出了严苛要求。
2026-01-17 20:45:17
931
原创 【多微电网】基于约束差分进化算法的大规模矩阵优化多微电网拓扑设计附Matlab代码
随着光伏、风电等分布式能源(DERs)的高比例渗透,单一微电网在应对能源随机性、负荷波动及设备故障时的局限性日益凸显。多微电网(Multi-Microgrid, MMG)通过互联形成协同系统,依托能源时空互补特性,可显著提升供电可靠性、能源利用率及系统韧性,成为智能配电网的核心架构方向。拓扑结构作为MMG系统的物理基础,直接决定能源分配效率、故障冗余能力与全生命周期投资成本,其优化设计是大规模MMG规划落地的关键技术瓶颈。
2026-01-17 20:43:22
663
原创 【多输入多输出(MIMO)干扰网络的能效优化】基于采用迭代半定规划-加权最小均方误差(SDP-WMMSE)算法与逐次凸逼近(SCA)算法求解MIMO干扰无线网络的能效优化问题研究附Matlab代码
随着5G密集组网、物联网多设备协同通信技术的快速普及,无线通信系统对频谱效率与能耗控制的双重需求日益迫切。多输入多输出(MIMO)技术凭借多天线空间复用与分集增益优势,成为提升频谱效率的核心手段,但其在密集部署场景下的同频干扰问题愈发突出,严重制约系统性能提升。传统资源分配策略多以最大化数据速率为核心目标,导致基站发射功率激增、能耗失控,难以契合“双碳”目标下绿色通信的发展诉求。
2026-01-17 20:42:04
751
原创 【多式联运】基于AFO算法、GA和PSO算法求解不确定多式联运路径优化问题,同时和MATLAB自带的全局优化搜索器进行对比附Matlab代码
多式联运作为综合运输体系的核心组成,融合铁路、公路、水路、航空等多种运输方式,凭借其高效、低成本、低能耗的优势,成为现代物流的主流发展方向。路径优化作为多式联运规划的核心环节,直接影响运输时效、成本控制及服务质量。然而,实际运输场景中存在大量不确定性因素,如运输时间波动、运费浮动、运力约束变化、天气干扰等,使得传统确定性优化模型难以适配实际需求,亟需构建不确定环境下的多式联运路径优化模型,并采用高效算法求解。
2026-01-17 20:39:05
826
原创 【多式联运】不确定需求下考虑混合时间窗的多式联运路径优化附Matlab代码
随着全球经济一体化进程加快与物流行业的智能化升级,多式联运作为整合公路、铁路、水路、航空等运输方式的高效物流模式,已成为现代供应链体系的核心组成部分。其通过“无缝衔接”实现货物从起点到终点的全流程运输,在提升运输效率、降低综合成本、减少碳排放等方面具备显著优势。据统计,我国多式联运货运量占比已从2020年的18%提升至2024年的28%,但相较于发达国家40%以上的占比,仍存在较大提升空间,核心瓶颈集中在不确定性因素应对与时间约束协调两大维度。
2026-01-17 20:32:43
595
原创 【多目标钻孔序列优化问题】基于Q-Learning的遗传算法求解多目标钻孔序列优化问题研究附Matlab代码
针对机械制造、地质勘探等领域3D空间钻孔序列优化中存在的高维约束、多目标冲突及传统算法收敛不足等问题,本文提出一种融合Q-Learning强化学习与遗传算法(GA)的混合优化方法(QL-GA)。该方法利用Q-Learning的动态学习特性,实时调整遗传算法的交叉概率、变异概率及选择策略,平衡算法的全局搜索能力与收敛速度,实现钻孔路径长度、机械损耗、作业安全性等多目标的协同优化。以硬岩隧道多臂协同钻孔和铝土矿勘探钻孔为测试场景,将所提算法与传统遗传算法、混合贪婪遗传算法进行对比实验。
2026-01-17 20:27:27
342
原创 【多传感器融合】在电力系统中针对网络入侵的多源数据融合附Python代码
随着电力系统向智能化、自动化转型,其依赖的通信与信息基础设施日益完善,却也沦为网络攻击的重点目标。网络入侵行为不仅威胁电网稳定运行,更关乎国计民生与国家安全。传统单一数据源的入侵检测方法因误报率高、漏报率高、对未知攻击识别能力弱等局限,已难以应对复杂多变的攻击态势。多传感器融合作为多源数据融合的核心技术,通过整合异构数据源信息,构建全面的攻击认知体系,为电力系统网络入侵检测提供了全新解决方案,显著提升检测的准确性与实时性。
2026-01-17 20:26:22
641
原创 【独家创新】基于ASL-QPSO-LSTM-AdaBoost的时间序列预测模型研究附Matlab代码
针对传统时间序列预测模型难以适配复杂非线性数据、参数调优依赖经验、泛化能力不足等问题,本文提出一种融合改进量子粒子群自适应优化算法(ASL-QPSO)与长短期记忆网络(LSTM)、自适应增强算法(AdaBoost)的四层嵌套混合预测模型。该模型通过ASL-QPSO算法实现LSTM核心超参数的智能优化,解决单一LSTM易陷入局部最优、收敛效率低的缺陷,再经AdaBoost集成框架加权融合多个优化后LSTM弱学习器,进一步降低预测方差、提升抗干扰能力。
2026-01-17 20:25:16
994
原创 【动态多目标优化】进化动态约束多目标优化测试集DCP1-DCP9的TruePF研究附Matlab代码
动态多目标优化问题(Dynamic Multi-objective Optimization Problems, DMOPs)广泛存在于工业调度、交通管理、能源优化等实际工程领域,其核心特征是目标函数、约束条件或关键参数随时间维度动态变化,导致最优解集(Pareto前沿,PF)呈现持续演变的特性。传统静态多目标优化算法在处理此类问题时,往往难以快速追踪动态变化的Pareto前沿,易陷入局部最优或出现解集断裂,无法满足实际场景对算法适应性、鲁棒性的需求。
2026-01-17 20:24:16
576
【医美行业运营】基于360平台的医美数据与投放优化方案:流量趋势及广告策略分析
2025-04-17
### 美妆行业基于小红书平台的中国美妆行业白皮书解析:国货美妆崛起与发展趋势分析
2025-04-17
【中医药领域】基于五指山蜘蛛资源的蛛王品牌健康养护产品开发与应用:传统中医与现代生物科技结合介绍了蛛王品牌
2025-04-17
### 2024年度医美投放报告总结
2025-04-17
农业优化中基于线性规划的7年农作物轮作计划及利润最大化的建模与实现
2025-03-24
本科生毕业设计论文开题报告-基于遗传算法的电动汽车路径规划系统设计与实现
2025-03-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅