- 博客(601)
- 收藏
- 关注
原创 【电力系统】基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网运行策略研究Matlab代码
摘要: 微网作为分布式能源系统的重要组成部分,其高效、可靠运行对保障电力系统安全稳定至关重要。本文针对微网运行中存在的差别定价和风险管理难题,提出了一种基于合作型Stackelberg博弈的优化策略。微网运营商作为领导者,制定差别电价和风险规避策略;各个参与者(例如分布式电源、负荷聚合商等)作为追随者,根据微网运营商的策略做出最优响应。通过建立包含风险成本的优化模型,并利用Matlab进行数值仿真,验证了所提策略的有效性和优越性,并探讨了关键参数对系统运行的影响。关键词: 微网;
2024-10-07 19:13:09 571
原创 【电力系统】低温环境下考虑电池寿命的微电网优化调度附Matlab复现
摘要: 随着分布式能源和储能技术的快速发展,微电网已成为解决能源问题的重要途径。然而,低温环境对电池性能和寿命的影响不容忽视,传统的微电网优化调度策略往往忽略了这一因素,导致调度结果不够理想,甚至缩短电池寿命,增加运行成本。本文研究了低温环境下考虑电池寿命的微电网优化调度问题,建立了包含电池低温特性模型的优化调度模型,并利用Matlab进行了仿真验证,分析了不同低温环境参数对微电网运行经济性和电池寿命的影响。关键词: 微电网;优化调度;电池寿命;低温环境;Matlab1. 引言。
2024-10-07 18:04:39 583
原创 多目标海洋捕食者算法(MOMPA)Matlab代码
多目标优化问题广泛存在于工程、经济和环境等诸多领域。与单目标优化问题相比,多目标优化问题需要同时优化多个相互冲突的目标函数,通常不存在单一的全局最优解,而是一组非支配解,即帕累托最优解集。为了有效地求解多目标优化问题,近年来涌现出许多元启发式算法,其中多目标海洋捕食者算法(Multi-Objective Marine Predators Algorithm, MOMPA)凭借其简洁的结构和高效的寻优能力,受到了广泛关注。
2024-09-28 23:42:33 1151
原创 SRACS 计算自谐振空心线圈的谐振频率和品质因数附Matlab代码
自谐振空心线圈 (Self-Resonant Air Core Coil, SRAC) 作为一种重要的无源器件,广泛应用于无线能量传输、无线通信和射频识别等领域。其谐振频率和品质因数是决定其性能的关键参数。准确计算 SRAC 的谐振频率和品质因数对于电路设计和系统优化至关重要。本文将详细探讨利用 SRACS (Self-Resonant Air Core Coil Simulation) 方法计算 SRAC 的谐振频率和品质因数,并提供相应的 Matlab 代码实现。
2024-09-28 23:40:22 674
原创 【最优潮流】基于人工鱼群算法的最优潮流计算附Matlab代码
摘要: 电力系统潮流计算是电力系统分析的基础,其计算精度和效率直接影响着系统规划和运行的可靠性。传统的潮流计算方法,如牛顿-拉夫逊法和P-Q分解法等,在处理大规模、复杂电力系统时,容易陷入局部最优解,计算效率也相对较低。近年来,随着智能优化算法的兴起,人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)凭借其优异的全局寻优能力和简单的算法结构,逐渐应用于电力系统潮流计算中,取得了显著成果。
2024-09-28 23:37:51 595
原创 【状态估计】基于UKF法、AUKF法、EUKF法电力系统三相状态估计研究附Matlab代码实现
电力系统状态估计是电力系统运行和控制的核心技术之一,其准确性直接影响着系统的安全稳定运行。传统的基于最小二乘法的状态估计方法在面对非线性测量模型和强噪声环境时,精度和鲁棒性受到限制。
2024-09-28 23:36:21 751
原创 【有序、无序充放电】基于蒙特卡诺和拉格朗日乘子法的电动车调度Matlab实现
摘要: 本文探讨了电动汽车(Electric Vehicles, EVs)充电桩的优化调度问题,特别关注有序和无序充放电场景下的调度策略。针对电力系统稳定性和经济性需求,本文提出了一种基于蒙特卡洛模拟和拉格朗日乘子法的电动车充放电调度算法,并利用Matlab进行了仿真验证。算法通过蒙特卡洛模拟预测电动车到达和离开时间的不确定性,并利用拉格朗日乘子法求解在满足系统约束条件下的最优充放电功率分配。仿真结果表明,该算法有效地降低了峰值负荷,提高了系统运行效率,并适应了电动车充放电行为的不确定性。
2024-09-28 23:34:15 598
原创 【优化调度】基于多时间尺度的电动汽车光伏充电站联合分层优化调度附Matlab代码
摘要: 随着电动汽车(Electric Vehicle, EV)的普及和可再生能源的广泛应用,电动汽车光伏充电站的建设日益受到重视。然而,光伏发电的间歇性和波动性以及电动汽车充电需求的随机性给充电站的优化调度带来了巨大挑战。本文提出一种基于多时间尺度的电动汽车光伏充电站联合分层优化调度策略,旨在最大限度地利用光伏能源,降低充电成本,并提高充电站的整体运行效率。该策略将时间尺度划分为日尺度和小时尺度,分别进行优化调度,并采用分层优化方法,有效解决了大规模优化问题的复杂性。
2024-09-28 23:32:32 903
原创 【物流选址】基于免疫优化算法的物流配送中心选址规划研究Matlab实现
摘要: 物流配送中心选址是物流系统规划的核心问题,其选址优劣直接影响整个物流系统的效率和成本。传统的物流配送中心选址方法,如贪婪算法、模拟退火算法等,在面对复杂多约束条件下,往往难以寻找到全局最优解。本文提出了一种基于免疫优化算法(Immune Optimization Algorithm, IOA)的物流配送中心选址规划方法,并利用Matlab软件进行实现和仿真验证。该方法通过模拟生物免疫系统的抗体产生、亲和力选择和克隆选择等机制,有效地搜索解空间,提高了寻找到全局最优解的概率。
2024-09-28 23:28:04 895
原创 【无人机】四旋翼飞行器目标分配、全局路径规划和局部路径规划附Matlab代码
摘要: 本文深入探讨了四旋翼飞行器在多目标任务中的目标分配、全局路径规划和局部路径规划问题。首先,分析了不同目标分配算法的优缺点,并针对四旋翼飞行器的特点,选择合适的算法进行目标分配。其次,详细阐述了全局路径规划算法,包括A*算法、Dijkstra算法等,并结合实际情况选择最优算法,以保证路径的效率和安全性。最后,介绍了局部路径规划算法,例如人工势场法和动态窗口法,用于处理全局路径中的局部障碍物,并保证四旋翼飞行器的稳定性和安全性。
2024-09-28 23:26:56 586
原创 【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究Matlab代码
近年来,随着物联网(IoT)和人工智能(AI)技术的快速发展,移动边缘计算(MEC)逐渐成为满足海量数据实时处理需求的关键技术。无人机(UAV),凭借其灵活性和机动性,成为MEC架构中理想的移动节点,能够有效地扩展网络覆盖范围并提升服务质量。然而,多无人机MEC系统中的路径规划和资源分配问题具有高度的复杂性,传统的优化算法难以有效解决。强化学习(Reinforcement Learning, RL)作为一种能够处理复杂决策问题的机器学习方法,为解决这一难题提供了新的思路。
2024-09-28 23:25:50 1264
原创 【无人机】基于GWO算法、MP-GWO灰狼算法、灰狼-布谷鸟优化算法、CS-GWO多种群灰狼优化算法的无人机路径规划Matlab代码
摘要: 无人机路径规划是无人机技术领域的核心问题之一,其目标是在满足各种约束条件(如飞行时间、能量消耗、避障等)下,寻找一条最优或次优的飞行路径。本文针对无人机路径规划问题,深入研究了基于灰狼优化算法 (GWO)、改进的灰狼优化算法 (MP-GWO)、灰狼-布谷鸟混合算法 (GWO-CS) 和多种群灰狼优化算法 (CS-GWO) 四种群智能优化算法的路径规划方法,并利用Matlab编程实现了相应的算法,对不同算法的性能进行了比较分析。
2024-09-28 23:24:54 314
原创 【无功优化】多目标灰太狼算法求解环境经济调度问题(IEEE30)附matlab代码
摘要: 电力系统环境经济调度问题 (Environmental Economic Dispatch, EED) 旨在在满足系统运行约束的前提下,最小化发电成本和环境污染排放。本文提出一种基于多目标灰太狼算法 (Multi-objective Grey Wolf Optimizer, MOGWO) 的无功优化方法,用于解决 IEEE 30 节点系统的 EED 问题。该方法考虑了发电机有功出力、电压幅值、无功出力以及线路潮流等约束条件,并通过帕累托最优解集来展现不同目标之间的权衡关系。
2024-09-28 23:23:24 846
原创 【微电网】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究附Matlab代码
摘要: 微电网作为一种新型电力系统,其高效、经济、可靠的运行调度至关重要。微电网多目标优化调度问题,通常涉及发电成本最小化、碳排放最小化、电压偏差最小化以及系统运行可靠性最大化等多个相互冲突的目标。针对此类复杂问题,本文提出了一种基于非支配排序的蜣螂优化算法 (NSDBO) 来求解微电网的多目标优化调度问题。蜣螂优化算法 (BO) 作为一种新兴的元启发式算法,具有良好的全局搜索能力和收敛速度。通过将非支配排序策略融入BO算法,有效提高了算法的寻优能力和收敛精度,并最终获得了更加优越的帕累托前沿解集。
2024-09-28 23:22:33 1006
原创 【论文复现】改进二进制粒子群算法在配电网重构中的应用【IEEE33节点】Matlab实现
摘要: 配电网重构是提高供电可靠性、降低运行成本和提升电网效率的重要手段。本文对一篇基于改进二进制粒子群算法 (Improved Binary Particle Swarm Optimization, IBPSO) 进行配电网重构的论文进行了复现研究,以IEEE 33节点系统为例,利用Matlab编程实现算法,并对算法的性能进行了评估和分析。
2024-09-28 23:21:16 750
原创 【交替方向乘子方法】ADOM 基于ADMM的遥感图像条纹噪声去除优化模型附Matlab代码 内容介绍遥感图像作为重要的地球观测数据来源,其质量直接影响着后续的地物解译和信息提取
遥感图像作为重要的地球观测数据来源,其质量直接影响着后续的地物解译和信息提取精度。然而,受传感器自身特性和成像环境的影响,遥感图像常常受到各种噪声的干扰,其中条纹噪声尤为常见,它严重影响图像的视觉效果和后续的图像处理工作。因此,有效去除遥感图像中的条纹噪声至关重要。本文将详细介绍一种基于交替方向乘子法 (Alternating Direction Method of Multipliers, ADMM) 的遥感图像条纹噪声去除优化模型,并提供相应的Matlab代码实现,以期为相关研究提供参考。
2024-09-28 23:20:27 807
原创 【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
摘要: 机械设备的可靠运行对于现代工业至关重要。然而,机械故障的早期诊断和预测一直是工程领域面临的挑战。
2024-09-28 23:19:24 704
原创 【电力系统】基于多目标粒子群优化算法的计及光伏波动性的主动配电网有功无功协调优化附Matlab代码
摘要: 主动配电网 (Active Distribution Network, ADN) 的发展显著提升了电力系统的灵活性与可靠性,而大规模光伏发电的并网则带来了显著的波动性挑战。本文针对计及光伏发电波动性的 ADN 有功无功协调优化问题,提出了一种基于多目标粒子群优化算法 (Multi-objective Particle Swarm Optimization, MOPSO) 的优化方法。
2024-09-26 23:49:09 737
原创 【电力系统】高比例风电电力系统储能运行及配置分析附Matlab代码
随着全球能源结构转型加速和对可再生能源的日益依赖,风电在电力系统中的占比持续攀升。然而,风电具有间歇性和波动性的特点,给电力系统安全稳定运行带来了严峻挑战。大规模储能技术的应用成为解决这一问题的关键途径。本文将对高比例风电电力系统中储能的运行策略和优化配置进行深入分析,并结合Matlab代码进行仿真验证,探讨不同储能配置方案对系统稳定性和经济性的影响。一、高比例风电电力系统面临的挑战高比例风电并网会带来一系列问题:出力波动性: 风速变化导致风电出力波动剧烈,影响系统频率和电压稳定性。
2024-09-26 23:48:15 815
原创 【单变量输入多步预测】基于CNN-LSTM的风电功率预测研究Matlab代码
风能作为一种清洁可再生能源,在全球能源转型中扮演着日益重要的角色。然而,风电功率具有高度的间歇性和波动性,给电网的稳定运行带来了巨大挑战。准确预测风电功率对于电力系统调度、优化和稳定性控制至关重要。本文将探讨基于卷积神经网络 (CNN) 和长短期记忆网络 (LSTM) 的单变量输入多步预测风电功率模型,并结合Matlab代码实现,对模型的构建、训练和性能评估进行详细分析。一、模型架构设计风电功率预测本质上是一个时间序列预测问题。
2024-09-26 23:46:56 887
原创 【单变量输入多步预测】基于CNN-LSSVM的风电功率预测研究附Matlab代码
摘要: 风电功率具有间歇性和波动性等特点,对其进行精确预测对于提高电力系统稳定性和可靠性至关重要。本文提出一种基于卷积神经网络(CNN)和最小二乘支持向量机(LSSVM)的混合模型,用于单变量输入的风电功率多步预测。CNN用于提取风电功率时间序列中的复杂特征,而LSSVM则用于建立预测模型,并通过交叉验证优化模型参数。最后,通过Matlab编程实现该模型,并利用实际风电功率数据进行实验验证,结果表明该方法具有较高的预测精度和稳定性,相比于传统的预测方法具有显著优势。关键词: 风电功率预测;
2024-09-26 23:46:11 977
原创 【单变量输入多步预测】基于CNN-BiLSTM的风电功率预测研究附Matlab代码
摘要: 风电功率具有间歇性和波动性,准确预测其未来输出对于电力系统稳定运行至关重要。本文针对单变量输入的多步风电功率预测问题,提出了一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合模型。CNN用于提取风电功率时间序列中的局部特征,BiLSTM则用于捕捉长程依赖关系和双向时间信息。通过Matlab编程实现该模型,并基于实际风电功率数据进行实验验证,结果表明该模型具有较高的预测精度和稳定性,优于传统的单一模型预测方法。关键词: 风电功率预测;卷积神经网络(CNN);
2024-09-26 23:45:11 708
原创 【垂直起降飞行器的设计与控制】固定翼和四旋翼整合自主飞行研究Matlab代码
垂直起降飞行器(VTOL,Vertical Take-Off and Landing)凭借其兼具垂直起降和水平高速飞行的优势,在民用和军用领域展现出巨大的应用潜力。然而,VTOL 的设计与控制远比传统固定翼飞机或旋翼飞机复杂,涉及多学科交叉,对控制算法的精度和鲁棒性提出了更高的要求。本文将深入探讨一种融合固定翼和四旋翼技术的 VTOL 飞行器设计与控制方案,并结合 Matlab 代码,阐述其自主飞行控制策略的实现过程。一、 VTOL 飞行器设计架构。
2024-09-26 23:44:21 1042
原创 【多变量输入单步预测】基于BiTCN-SVM的风电功率预测研究附Matlab代码
摘要: 风电功率具有间歇性和波动性,准确预测风电功率对电网稳定运行至关重要。本文提出了一种基于双向时间卷积网络 (BiTCN) 和支持向量机 (SVM) 的多变量输入单步风电功率预测模型,旨在提升预测精度和稳定性。模型利用BiTCN提取风速、风向、温度等多变量时间序列数据中的时空特征,并将其作为SVM的输入,进行最终的功率预测。本文详细阐述了模型的结构、参数优化策略以及Matlab代码实现,并通过实验验证了该方法的有效性。关键词: 风电功率预测;双向时间卷积网络 (BiTCN);支持向量机 (SVM);
2024-09-26 23:43:19 637
原创 【电力系统短期负荷预测】基于ELM、白鲸算法优化ELM、鹭鹰算法优化ELM极限学习机的电力系统短期负荷预测研究Matlab代码
电力系统短期负荷预测是电力系统规划、运行和控制的关键环节,其准确性直接影响着电力系统的安全稳定运行和经济效益。传统的短期负荷预测方法,如时间序列分析法、回归分析法等,在处理非线性、非平稳的电力负荷数据时往往存在精度不足的问题。近年来,随着人工智能技术的快速发展,极限学习机(Extreme Learning Machine, ELM)凭借其优异的学习速度和泛化能力,成为电力系统短期负荷预测领域的研究热点。
2024-09-26 23:39:38 808
原创 【电力系统】基于多目标粒子群优化算法的计及光伏波动性的主动配电网有功无功协调优化附Matlab代码
摘要: 随着分布式电源,特别是光伏发电的大规模接入,主动配电网(Active Distribution Network, ADN)的运行日益复杂。光伏发电的间歇性和波动性给配电网的电压稳定性、功率损耗和系统安全带来了严峻挑战。本文提出一种基于多目标粒子群优化算法(Multi-objective Particle Swarm Optimization, MOPSO)的主动配电网有功无功协调优化方法,旨在有效应对光伏波动性,并同时优化多个目标函数,包括减少网损、提升电压稳定性以及提高系统运行的可靠性。
2024-09-26 23:38:43 839
原创 【电力系统】高比例风电电力系统储能运行及配置分析附Matlab代码
摘要: 随着全球对清洁能源的需求日益增长,风电在电力系统中的占比持续提升。然而,风电具有间歇性和波动性等特点,给电力系统安全稳定运行带来了巨大挑战。储能技术作为应对风电波动性的有效手段,其运行方式和配置策略对系统稳定性至关重要。本文将对高比例风电电力系统中储能的运行策略和优化配置进行深入分析,并结合Matlab仿真平台进行验证,探讨不同储能配置方案对系统频率稳定性、电压稳定性以及经济性的影响。关键词: 风电,储能,电力系统,运行策略,优化配置,Matlab仿真1. 引言。
2024-09-26 23:37:49 685
原创 【单变量输入多步预测】基于CNN-LSTM的风电功率预测研究Matlab代码
风电作为一种清洁可再生能源,在全球能源转型中扮演着越来越重要的角色。然而,风电功率具有高度的间歇性和波动性,给电网的稳定运行带来了巨大的挑战。准确预测风电功率输出对于电网调度、电力市场交易以及提高能源利用效率至关重要。本文针对单变量输入多步预测这一问题,研究基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型,并利用Matlab平台进行代码实现和性能评估,旨在提高风电功率预测的精度和可靠性。一、研究背景与意义。
2024-09-26 23:36:35 837
原创 【单变量输入多步预测】基于CNN-LSSVM的风电功率预测研究附Matlab代码
摘要: 风能作为一种清洁可再生能源,其发电功率的波动性和间歇性给电网的稳定运行带来了巨大的挑战。准确预测风电功率对于电力系统的调度和控制至关重要。本文提出一种基于卷积神经网络 (CNN) 和最小二乘支持向量机 (LSSVM) 的风电功率多步预测模型。CNN 用于提取风电功率时间序列中的复杂特征,LSSVM 则用于建立精确的预测模型。通过MATLAB进行仿真实验,验证了该模型的有效性和优越性,并与其他常用模型进行了比较分析。关键词: 风电功率预测;卷积神经网络 (CNN);
2024-09-26 23:35:35 757
原创 【单变量输入多步预测】基于CNN-BiLSTM的风电功率预测研究附Matlab代码
摘要: 风电功率的波动性和间歇性对电力系统稳定运行带来巨大挑战。精确的风电功率预测对于电力系统调度和稳定性至关重要。本文研究基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的单变量输入多步预测模型,用于预测未来一段时间内的风电功率。该模型利用CNN提取风电功率时间序列中的局部特征,BiLSTM则捕捉时间序列中的长期依赖关系,从而提高预测精度。本文详细介绍了模型的架构、训练方法以及Matlab代码实现,并通过实验验证了该模型的有效性。关键词: 风电功率预测;卷积神经网络(CNN);
2024-09-26 23:34:34 1033
原创 【垂直起降飞行器的设计与控制】固定翼和四旋翼整合自主飞行研究Matlab代码
垂直起降飞行器 (VTOL,Vertical Take-Off and Landing) 凭借其兼具垂直起降和水平飞行的能力,在民用和军事领域展现出巨大的应用潜力,例如城市空中交通、精准农业、灾难救援等。然而,VTOL 的设计与控制却是一个极具挑战性的课题,它需要综合考虑空气动力学、控制理论、导航技术以及电力系统等多个学科的知识。本文将重点探讨固定翼和四旋翼整合型VTOL的自主飞行研究,并结合Matlab代码阐述其设计与控制策略。传统意义上的VTOL主要分为固定翼VTOL和旋翼VTOL两大类。
2024-09-26 23:32:09 808
原创 【ISAR成像】基于谐波小波的ISAR成像目标识别研究附Matlab代码
摘要: 逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)成像技术能够获取目标高分辨率的二维图像,为目标识别提供重要信息。然而,ISAR图像易受噪声和杂波影响,且目标姿态变化会造成图像散焦,降低识别精度。本文提出一种基于谐波小波变换的ISAR成像目标识别方法,利用谐波小波的多尺度、多分辨率特性,有效地抑制噪声,提取目标的显著特征,从而提高目标识别的准确率和鲁棒性。文中详细介绍了该方法的原理、算法步骤以及Matlab实现代码,并通过仿真实验验证了其有效性。
2024-09-26 23:31:10 561
原创 基于Simulink的正弦波PWM技术和三次谐波注入PWM技术研究
摘要: 本文基于MATLAB/Simulink平台,对正弦波脉宽调制(Sinusoidal Pulse Width Modulation, SPWM)技术和三次谐波注入脉宽调制(Third Harmonic Injection PWM, THIPWM)技术进行了深入研究。通过搭建相应的Simulink模型,对两种PWM技术的波形特性、谐波含量及电机控制性能进行了仿真分析和对比。
2024-09-25 23:27:00 1001
原创 基于Simulink的单个PWM信号的傅里叶分析&特定谐波抑制
脉宽调制 (PWM) 技术广泛应用于电力电子系统中,用于控制电力开关器件的导通和关断时间,从而实现对负载的精确控制。然而,PWM信号本身并非完美的正弦波,其包含丰富的谐波成分,这些谐波成分可能对系统稳定性、电磁兼容性 (EMC) 以及负载性能造成不利影响。因此,对PWM信号进行傅里叶分析,识别其主要谐波成分,并采取相应的抑制措施至关重要。本文将基于Simulink平台,对单个PWM信号进行傅里叶分析,并探讨特定谐波抑制的方法。一、 PWM信号的产生与傅里叶分析。
2024-09-25 23:25:26 854
原创 基于Q-learning算法和ε-greedy策略解决随机生成的方形迷宫问题Matlab代码实现
摘要: 本文探讨了利用Q-learning强化学习算法结合ε-greedy策略解决随机生成的方形迷宫寻路问题。首先,详细介绍了Q-learning算法的基本原理和ε-greedy策略的作用,并阐述了其在迷宫寻路问题中的适用性。随后,给出了基于Matlab的代码实现,包括迷宫的随机生成、状态空间和动作空间的定义、Q表的初始化以及Q-learning算法的迭代更新过程。最后,通过实验结果验证了算法的有效性,并分析了参数选择对算法性能的影响。关键词: Q-learning;ε-greedy;强化学习;迷宫寻路。
2024-09-25 23:24:39 917
原创 基于ELM-Adaboost的自行车租赁数量预测研究附Matlab代码基于ELM-Adaboost的自行车租赁数量预测研究附Matlab代码
摘要: 自行车租赁系统日益普及,准确预测自行车租赁数量对于优化资源配置、提升服务质量至关重要。本文提出一种基于极限学习机(ELM)和AdaBoost算法的自行车租赁数量预测模型。ELM以其快速训练和良好的泛化能力著称,而AdaBoost则能够提升弱学习器的性能。通过将ELM作为基学习器,结合AdaBoost算法,构建集成学习模型,以提高预测精度和鲁棒性。
2024-09-25 23:23:37 801
原创 基于EEMD-MPE-KPCA-BILSTM集合经验模态分解-多尺度排列嫡-核主元分析-双向长短期记忆网络用于故障识别与诊断研究Matlab代码实现
摘要: 复杂工业设备的运行状态监控与故障诊断一直是工业界关注的焦点。本文提出一种基于集合经验模态分解(EEMD)、多尺度排列熵(MPE)、核主元分析(KPCA)和双向长短期记忆网络(BILSTM)的集成方法,用于提升工业设备故障识别的准确性和鲁棒性。EEMD用于分解原始振动信号,MPE提取多尺度特征,KPCA进行降维,最后BILSTM进行故障分类。本文详细阐述了该方法的理论基础、算法流程及Matlab代码实现,并通过仿真实验验证了其有效性。关键词: 故障诊断;集合经验模态分解;多尺度排列熵;核主元分析;
2024-09-25 23:22:23 705
原创 基于 V2G 技术的电动汽车实时调度策略附Matlab代码 荔枝
摘要: 随着电动汽车(Electric Vehicle, EV)的普及,其庞大的电池储能能力逐渐被视为一种可调度的分布式能源资源。车网互动(Vehicle-to-Grid, V2G)技术允许电动汽车将能量回馈电网,从而提升电网的稳定性和可靠性。本文探讨基于V2G技术的电动汽车实时调度策略,着重分析了考虑电动汽车电池寿命、用户用车需求以及电网运行状态等多目标约束下的优化模型,并利用Matlab进行了仿真验证,最终提出了一种高效的实时调度算法,以最大化电网效益并兼顾用户需求和电池寿命。关键词: 电动汽车;
2024-09-25 23:19:03 803
原创 灰色GM(1,1)模型及其在电力负荷预测中的应用附Matlab代码
灰色系统理论作为一种处理不确定性问题的有效方法,在诸多领域展现出强大的应用潜力。其中,灰色GM(1,1)模型凭借其建模简单、计算便捷且预测精度相对较高的优势,在电力负荷预测中得到广泛应用。本文将深入探讨灰色GM(1,1)模型的原理、建模步骤以及在电力负荷预测中的应用,并结合Matlab代码进行详细阐述。一、灰色GM(1,1)模型原理灰色系统理论的核心思想在于将原始数据序列通过累加生成等一系列处理,转化为具有规律性的数据序列,再利用微分方程建立模型进行预测。
2024-09-25 23:17:45 954
原创 含电热联合系统的微电网运行优化附Matlab代码
摘要: 本文针对包含电热联合(Combined Heat and Power, CHP)系统的微电网,研究其经济和高效运行优化策略。基于微电网的运行特性和CHP系统的特点,建立了考虑多种约束条件的优化模型,目标函数为最小化微电网的运行成本。并利用Matlab软件进行数值仿真,验证了所提出方法的有效性,并分析了不同参数对优化结果的影响。关键词: 微电网;电热联合;运行优化;Matlab;约束优化1. 引言随着能源需求的不断增长和环境保护压力的日益加大,分布式能源系统,特别是微电网技术受到了广泛关注。
2024-09-25 23:16:08 871
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人