背景简介
在人工智能和机器学习领域,约束获取问题(Constraint Acquisition Problem)和大邻域搜索(Large Neighborhood Search, LNS)是两个研究热点。约束获取问题涉及到从用户提供的示例中学习出一组约束序列,这些约束序列定义了一个问题的特定模型。而LNS则是一种用于求解组合优化问题的强大算法,它通过探索问题解空间中定义良好的大邻域来寻找最优解或近似解。
约束获取问题的研究
约束获取问题是一个复杂的研究领域,它要求算法能够从一组训练数据(E+ 和 E−)中,通过与用户的交互学习出问题的模型。在本文中,通过定义一系列约束来构建问题的版本空间(Version Space),并寻求一个约束序列C,使得C属于给定的偏差B,同时满足E+中的所有实例都是解,而E−中的实例都不是解。这种学习过程既可以视为用户问题的建模阶段,也可以视为专家问题的自动重述。
大邻域搜索(LNS)的方法
大邻域搜索是一种局部搜索范式,它通过固定问题解的一部分,释放剩余的变量,并使用树搜索、约束编程或混合整数规划等强大算法来探索定义良好的大邻域。LNS的核心在于定义邻域的方式,有效的邻域应该能够同时释放相关的变量,使它们能够自由地改变值并获得更有意义的解。
非结构化LNS的探索
非结构化LNS方法(如RINS算法)不依赖于问题的结构,而是利用问题的混合整数规划模型的连续松弛来定义邻域。由于其灵活性,这种算法可以应用于任何MIP模型,而无需额外的输入。非结构化LNS在探索邻域时表现出强大的随机性和多样性。
结构化LNS的实现
结构化LNS方法则是基于问题的特定结构来定义邻域,例如,可以释放特定资源上的所有活动,或根据时间窗口释放活动。结构化LNS方法通过为特定问题量身定制邻域,可以更有效地探索解空间,并且往往能够得到更优质的解。
实验与结果
在实验中,作者比较了结构化和非结构化LNS方法在解决带提前和延迟成本的作业车间调度问题上的表现。结果显示,两种方法在不同的基准测试中各有千秋,结构化LNS通过利用问题结构改善了约束编程的效率,而非结构化LNS通过随机化增加了搜索的多样性。
总结与启发
通过本文的研究,我们可以看到约束获取问题求解和大邻域搜索方法在解决复杂问题中的潜力。结构化和非结构化LNS方法各有优势,且都证明了在组合优化问题中的有效性和稳健性。未来的研究可以探索如何将这两种方法结合,以进一步提高求解效率和质量。
参考文献
- R. Coletta, C. Bessiere, B. O’Sullivan, E.C. Freuder, S. O’Connell, and J. Quinqueton. Semi-automatic modeling by constraint acquisition. Technical Report 03051, LIRMM – University of Montpellier II, Montpellier, France, June 2003.
- F.A. Marginean. Soft learning: A bridge between data mining and machine learning.
- Tom Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1982.
- S. O’Connell, B. O’Sullivan, and E.C. Freuder. Strategies for interactive constraint acquisition.
- B. O’Sullivan, S. O’Connell, and E.C. Freuder. Interactive constraint acquisition for concurrent engineering.
- E. Danna and L. Perron. Structured vs. unstructured large neighborhood search: A case study on job-shop scheduling problems with earliness and tardiness costs.
- J. C. Beck and P. Refalo. Combining local search and linear programming to solve earliness/tardiness scheduling problems.
- P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems.
- M. Vasquez and L. Whitley. A comparison of genetic algorithms for the dynamic job shop scheduling problem.