单机最大负载_电流互感器允许接入的实际最大二次负载(注电案例1865)

博客围绕某国外水电站水轮发电机组展开,介绍了其单机额定容量、电压等参数。重点是在给定并网电压、电流互感器相关参数及不同短路电流情况下,依据规程计算电流互感器允许接入的实际最大二次负载,最终得出正确选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某国外水电站安装的水轮发电机组,单机额定容量为 120MW,发电机额定电压为 13.8kV,cosφ=0.85。发电机、主变压器采用发变组单元接线,未装设发电机断路器,主变高压侧三相短路时流过发电机的最大短路电流为 19.6kA。发电机中性点接线及 CT 配置如右图:

0eacb251abe8a4c6dc4c1521aa1de122.png

1865、假定该电站并网电压为 220kV,220kV 线路保护用电流互感器选用 5P30 级,变比为500/1A,额定二次容量 20VA,二次绕组电阻 6Ω,给定暂态系数 K=2;线路距离保护第一段末端短路电流 15kA,保护装置安装处短路电流 25kA。计算该电流互感器允许接入的实际最大二次负载应为哪项?

A.4.8Ω

B.7Ω

C.9.6Ω

D.20Ω

解答过程:

依据《电流互感器和电压互感器选择及计算规程》DL/T866-2015

公式10.2.3-1、-2

Eal=30*1*(6+20)=780V

1、线路距离保护第一段末端短路:

2.1.8

Kpcf=15*1000/500=30

780≥E′al=2*30*1*(6+R′b)

R′b≤7Ω

2、保护装置安装处短路

Kpcf=25*1000/500=50

780≥E′al=50*1*(6+R′b)

R′b≤9.6Ω

条文说明计算实例,保护装置安装处短路,不乘给定暂态系数

Eal≥E′al

实际最大二次负载取小

本题正确选项是B

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标格式: YOLO格式标,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标体系规范: 严格遵循YOLO标标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标格式: YOLO格式标,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标质量优异: YOLO格式标严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值