网页内容提取新体验:正文提取器v1.0发布

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:网页正文提取器是一款旨在高效提取网页主要信息的工具,可以去除非正文元素如广告和导航。软件利用对大型门户网站的结构分析,总结特征并应用到新网页的快速内容提取中。核心技术包括HTML解析、CSS选择器定位、文本清洗、内容权重计算、模式识别、智能过滤以及自适应优化。正文提取器v1.0为大数据处理和信息提取带来便捷,尤其适用于研究人员和SEO专业人员,提高工作效率并减少处理网页的困扰。 网页正文提取器

1. 网页正文提取器功能介绍

在当今信息爆炸的时代,网页正文提取器成为了从海量数据中提取有用信息的重要工具。此类工具的主要功能是自动识别网页中的主要内容区域,并从中提取纯净的文本信息供用户阅读。这对于内容管理者、搜索引擎优化(SEO)专家、数据分析师等专业人士来说,无疑是一个宝贵的辅助工具。

提取器的工作流程通常包括分析网页结构、定位正文内容、清洗文本以及内容权重评估。这一系列处理步骤的目的是为了从原始网页中剥离出最核心的信息,去除无关的广告、导航、版权信息等。

接下来的章节将详细介绍这些功能的工作原理,如何通过核心技术和算法来实现这些功能,以及如何对这些工具进行优化以应对不断变化的网页结构和内容发布模式。通过深入分析,您将获得构建或选择合适网页正文提取器的全面理解。

2. 大型门户网站结构分析

2.1 门户网站的页面组成

2.1.1 常见的页面结构元素

门户网站的页面通常由多个结构元素组成,这些元素构成了用户浏览的界面,也是搜索引擎抓取内容的基础。以下是几种常见的页面结构元素:

  1. 头部(Header) :通常包含网站的标志(Logo)、导航栏、搜索框和可能的用户登录入口。
  2. 导航栏(Navigation Bar) :提供网站的主菜单,方便用户快速定位到他们感兴趣的部分。
  3. 主体内容区(Content Area) :包含网页的主要信息,如新闻、文章或其他内容。这是搜索引擎最关注的部分。
  4. 侧边栏(Sidebar) :提供额外信息和链接,如广告、最新动态或相关链接等。
  5. 页脚(Footer) :包含版权信息、法律声明、联系方式等。

网页设计者会根据网站的具体需求和目标用户群的偏好来调整这些结构元素,以达到最佳的用户界面体验。

2.1.2 页面布局的层级关系

页面布局的层级关系体现在其在页面上的视觉重要性和逻辑上的组织结构。结构化的层级有助于用户快速了解页面内容,并指导搜索引擎对页面内容的重要性进行排序。

  1. 视觉层级 :通过不同的设计元素(如字体大小、颜色、粗细)来体现信息的层次。
  2. 逻辑层级 :通过页面结构(如HTML的 <header> , <nav> , <article> , <aside> , <footer> 标签)来组织内容,确保内容的语义清晰。

这种层级关系对于实现良好的用户体验和SEO优化至关重要。

表格展示:门户网站页面结构层级示例

| 层级名称 | 描述 | 相关HTML标签 | SEO重要性 | |----------------|---------------------------------|-----------------------|------------------------| | 头部(Header) | 网站品牌和导航 | <header> , <nav> | 中等 | | 导航栏 | 页面和内容导航 | <nav> | 高(导航链接对SEO很重要)| | 主体内容区 | 主要信息展示 | <article> , <section> | 极高(搜索引擎优先索引) | | 侧边栏 | 额外信息和链接 | <aside> | 中等到高(内容相关性) | | 页脚(Footer) | 版权、法律声明、联系信息 | <footer> | 低(但有助于网站透明度) |

2.2 门户网站的技术构成

2.2.1 前端技术框架

门户网站的前端技术框架负责页面的视觉呈现和用户交互。常用的技术框架包括:

  1. HTML/CSS/JavaScript :网站的基础技术,用于创建结构化文档、应用样式以及增加交云互动功能。
  2. 前端框架 :如React、Vue.js、Angular等,提供了一套编程模型和工具,帮助开发者更高效地构建复杂的前端应用。

门户网站的前端开发通常涉及以下几个方面:

  • 响应式设计 :确保网站在不同设备上(桌面、平板、手机等)都能提供良好的浏览体验。
  • 前端性能优化 :通过减少HTTP请求、代码分割、懒加载等技术减少加载时间。
  • 交互设计 :设计并实现用户操作的响应动作,如滑动、点击、拖拽等。

2.2.2 后端服务架构

后端服务架构是门户网站的“大脑”,处理业务逻辑、数据存储和服务器端的交互。它通常包括以下几个组件:

  1. 服务器 :托管网站的服务器硬件,如物理服务器或云服务器。
  2. 应用服务器 :运行网站应用程序,如使用Node.js、Apache或Nginx等。
  3. 数据库 :存储网站数据,常用的数据库管理系统有MySQL、PostgreSQL、MongoDB等。
  4. API服务 :为前端提供数据接口,通常使用RESTful API或GraphQL等。
  5. 安全机制 :包括数据加密、防火墙、身份验证和授权等,确保网站安全。

门户网站的后端服务通常需要高并发处理能力、快速的数据检索和可靠的安全保障。

代码块:后端API示例

# Python Flask 示例API
from flask import Flask, jsonify, request
app = Flask(__name__)

@app.route('/articles/<int:article_id>', methods=['GET'])
def get_article(article_id):
    # 模拟从数据库检索文章
    article = {"id": article_id, "title": "Example Article Title", "content": "Content of example article"}
    return jsonify(article)

if __name__ == '__main__':
    app.run(debug=True)

在上述Python Flask示例中,我们创建了一个简单的RESTful API端点 /articles/<article_id> 来检索和返回文章数据。当发起GET请求时,API返回指定ID的文章信息。这只是后端服务中的一个小部分,实际门户网站的后端系统要复杂得多,并涉及到数据库操作和更完整的业务逻辑。

2.3 网站内容的组织方式

2.3.1 内容发布流程

门户网站的内容发布流程涉及内容的创建、审核、发布和更新。一个高效的流程可以保证内容的时效性和质量。主要步骤包括:

  1. 内容创作 :编辑或用户创建新的内容。
  2. 内容审核 :确保内容的准确性和合法性,可能涉及多级审核机制。
  3. 内容发布 :将审核通过的内容发布到网站上。
  4. 内容更新 :定期对旧内容进行更新,以保持信息的准确性。

2.3.2 内容的分类与标签化

为内容添加分类和标签可以提高其可发现性和搜索引擎优化(SEO)效果。分类和标签的应用使得内容更容易被索引和检索。

  1. 分类 :通常根据主题或领域将内容划分为不同的大类,例如新闻网站可能会有“体育”、“财经”、“科技”等分类。
  2. 标签 :为每篇文章或页面附加一个或多个关键词,用于详细描述内容的特征或属性。

合理的内容分类和标签化能够帮助搜索引擎更好地理解内容主题,从而提高网站在搜索结果中的排名。

流程图展示:内容发布与管理流程

graph LR
    A[内容创作] -->|审核通过| B[内容发布]
    B -->|定期更新| C[内容维护]
    A -->|审核未通过| D[内容修改]
    D --> A
    C -->|归档| E[旧内容处理]
    E -->|删除| F[内容删除]

在这个流程中,内容首先由创作者创作,然后通过审核流程。通过审核的内容被发布,并且会定期进行更新。如果内容未通过审核,则需要修改后重新提交审核。对于需要保留的内容,执行维护;而对于旧内容,则通过归档或删除来处理。

通过上述介绍的门户网站结构分析,我们可以看到一个成功的大门网站是依靠精心设计的页面结构、稳固的技术支撑以及有效的内容组织策略来构建的。这些元素共同工作,确保网站既能够提供高质量的用户体验,同时也被搜索引擎所青睐。接下来的章节将探讨如何利用核心技术来应对网页正文提取的挑战。

3. 核心技术应用

3.1 数据抓取技术基础

3.1.1 网络爬虫的工作原理

网络爬虫是一个自动获取网页内容的程序,其工作原理可以简单概括为以下四个步骤:

  1. 选择种子URL :程序从一个或多个初始URL开始抓取网页数据。
  2. 发送请求 :爬虫向服务器发送HTTP请求,获取网页的HTML文档。
  3. 解析内容 :爬虫解析获取的HTML文档,提取出新的URL(也就是链接),供后续抓取使用。
  4. 存储数据 :爬虫将获取的数据存储到数据库或文件中。

在实现网络爬虫时,我们常常使用如Python的 requests 库或 Scrapy 框架。例如,使用 requests 库发送请求的代码示例如下:

import requests

def fetch_page(url):
    response = requests.get(url)
    if response.status_code == 200:
        return response.text  # 返回网页内容
    else:
        print("Failed to retrieve the webpage")

在上述代码中, fetch_page 函数接受一个URL作为参数,发送HTTP GET请求,并在成功的情况下返回响应的HTML内容。

3.1.2 反爬虫机制的应对策略

随着互联网的发展,网站为了防止爬虫对服务造成过大压力或保护版权,采取了多种反爬虫机制,如:

  • User-Agent限制 :通过检查HTTP头中的User-Agent字段来拒绝爬虫的访问。
  • IP限制 :通过识别并限制频繁访问的IP地址来防止爬虫。
  • 动态令牌 :在页面中加入动态生成的令牌(token),要求爬虫在请求中包含正确的令牌才能获取数据。

应对这些反爬虫机制的策略可以包括:

  • 伪装User-Agent :使用真实浏览器的User-Agent来伪装爬虫。
  • IP代理池 :使用IP代理池技术来轮换IP地址,避免IP被封禁。
  • 自动化令牌处理 :利用验证码识别技术或分析网页生成令牌的算法来自动化处理令牌。

使用这些策略时,代码中可能需要添加一些额外的设置,如在请求头中添加用户代理(User-Agent):

headers = {
    "User-Agent": "Mozilla/5.0 (compatible; MyCrawler/1.0; +http://mywebsite.com/bot)"
}
response = requests.get(url, headers=headers)

3.2 动态内容的处理方法

3.2.1 JavaScript动态加载内容的抓取

许多现代网站使用JavaScript动态加载内容,这意味着内容并不直接存在于初始加载的HTML文档中,而是在用户与页面交互或等待一段时间后由JavaScript动态生成。为了抓取这些动态内容,爬虫需要能够执行JavaScript代码。

Selenium是一个可以模拟浏览器行为的工具,能够处理复杂的JavaScript渲染页面。以下是一个使用Selenium进行动态内容抓取的简单示例:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

options = Options()
options.headless = True  # 无头模式运行,不显示浏览器界面
driver = webdriver.Chrome(options=options)

# 加载页面
driver.get('https://example.com')
# 等待JavaScript加载完成
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.ID, 'dynamic-content')))

# 抓取动态加载的内容
content = driver.find_element(By.ID, 'dynamic-content').text
print(content)

# 关闭浏览器
driver.quit()

在此代码中,Selenium打开一个无头模式下的浏览器窗口,加载目标页面,并等待ID为'dynamic-content'的元素加载完成。

3.2.2 AJAX技术与数据提取

AJAX(Asynchronous JavaScript and XML)技术允许网页异步加载数据而无需重新加载整个页面。这在很多情况下通过JSON格式来实现数据交换。为了提取AJAX加载的数据,我们需要分析网络请求并找到正确请求地址和参数。

对于简单的AJAX请求,可以使用浏览器的开发者工具进行网络请求的分析。在Python中,我们可以利用 requests 库来模拟AJAX请求:

import json
import requests

url = 'https://example.com/ajax_endpoint'
params = {
    'param1': 'value1',
    'param2': 'value2'
}
response = requests.get(url, params=params)
data = response.json()  # 解析JSON格式的数据

# 进一步处理抓取到的数据
print(data)

该代码块通过构造AJAX请求参数,向服务器发起请求并获取数据,最后将获取的JSON格式数据进行解析。

在下一章节中,我们将探讨如何使用HTML解析技术来提取网页内容,并进一步优化数据抓取的性能。

4. HTML解析技术

4.1 HTML文档对象模型(DOM)

4.1.1 DOM树结构分析

文档对象模型(DOM)是一种在浏览器中表示HTML和XML文档的接口,它为文档提供了一个编程接口,允许程序和脚本动态地访问和更新文档的内容、结构和样式。DOM以树形结构呈现,文档中的每一个节点都代表了文档的一部分,节点之间的关系构成了层级结构。

  • 节点类型 : DOM树中的节点可以是元素节点、文本节点、注释节点等。每个节点类型都有其特定的属性和方法。例如,元素节点具有子元素和属性,文本节点包含文本内容。
  • 层级关系 : 在DOM树中,节点可以有多个子节点,但只有一个父节点(除了根节点)。根节点是文档的根元素,通常是 <html> 元素。
  • 遍历和访问 : DOM节点可以通过多种方式遍历和访问,如使用 getElementById getElementsByTagName 等方法。更复杂的操作则需要递归遍历节点树。
// 获取所有的段落元素
let paragraphs = document.getElementsByTagName('p');
for (let i = 0; i < paragraphs.length; i++) {
  // 对每个段落进行操作
}

4.1.2 DOM操作的基本方法

进行DOM操作是网页开发中不可或缺的一部分,通过JavaScript可以创建、插入、修改或删除节点。以下是几种常见的DOM操作方法:

  • 创建节点 : 使用 document.createElement() 方法可以创建一个新元素节点。
  • 插入节点 : 新创建的节点需要使用 appendChild() insertBefore() 方法插入到DOM树中。
  • 删除节点 : 使用 removeChild() 方法可以从DOM树中删除一个节点。
  • 修改节点 : 通过直接修改节点的 innerHTML 属性或通过 replaceChild() 方法替换一个节点的内容或子节点。
// 创建一个新段落元素
let newP = document.createElement('p');
// 设置段落的内容
newP.innerHTML = '这是一个新的段落';

// 获取body元素,并将新段落添加到其中
document.body.appendChild(newP);

理解DOM操作的复杂性和DOM结构对于正确编写网页正文提取器至关重要。它不仅可以帮助开发者编写高效的解析代码,还能够避免不必要的DOM操作导致的性能问题。

4.2 HTML解析技术细节

4.2.1 解析库的选择与比较

HTML解析库是为了简化对HTML文档的分析过程而设计的工具库。这些库通常提供了更高级的抽象,比如直接将HTML转换成一个对象模型,允许开发者以编程方式操作和导航HTML文档结构。以下是一些流行的HTML解析库及其特点:

  • jsdom : 一个JavaScript环境,模拟了浏览器中的DOM环境。它允许开发者在Node.js环境中使用DOM API,处理HTML和浏览器API。
  • cheerio : 专为服务器端设计的快速、灵活且简洁的jQuery核心实现。它非常适合于进行快速的HTML处理。
  • lxml : 一个高性能的HTML和XML解析库,使用Python编写,它提供了丰富的接口,适合复杂文档的解析。
# lxml示例
from lxml import html

# 解析HTML内容
tree = html.fromstring('<html><body><p>这是一个段落。</p></body></html>')

# 获取所有的段落元素
paragraphs = tree.xpath('//p')

# 打印段落内容
for p in paragraphs:
    print(p.text)

4.2.2 解析流程与性能优化

在进行HTML解析时,一个有效的解析流程通常包括以下步骤:

  1. 获取HTML内容 : 通过HTTP请求获取目标网页的HTML内容。
  2. 选择解析库 : 根据具体需求选择合适的HTML解析库。
  3. 解析HTML : 使用解析库将HTML内容解析成DOM树或其他可用的数据结构。
  4. 数据提取 : 通过遍历DOM树或使用特定的选择器提取所需的数据。
  5. 数据清洗 : 清除提取数据中的噪声,如无关的HTML标签或格式化字符。
  6. 数据输出 : 将清洗后的数据输出为所需格式。
import requests
from lxml import html

# 1. 获取HTML内容
response = requests.get('https://example.com')
html_content = response.text

# 2. 选择解析库
# (此处选择lxml作为解析库)

# 3. 解析HTML
tree = html.fromstring(html_content)

# 4. 数据提取
# 假设我们提取所有的标题
headings = tree.xpath('//h1 | //h2 | //h3')

# 5. 数据清洗
# (根据需要进行清洗)

# 6. 数据输出
for heading in headings:
    print(heading.text_content())

在性能优化方面,可以从以下几个方面入手:

  • 避免不必要的DOM操作 : 这可以减少对DOM的解析次数,提高执行效率。
  • 缓存 : 在可能的情况下对频繁使用的节点或数据进行缓存,避免重复的解析操作。
  • 异步处理 : 对于耗时的解析操作,考虑使用异步编程模型,以避免阻塞主线程。
  • 最小化数据流 : 只提取需要的数据,避免加载整个文档的所有数据。

通过这些优化手段,可以显著提高HTML解析的性能,从而优化整个网页正文提取器的运行效率。

5. CSS选择器定位正文内容

5.1 CSS选择器原理

5.1.1 选择器的种类与用途

CSS选择器是CSS规则的组成部分,用于定位HTML文档中需要应用样式的元素。CSS选择器多种多样,每种选择器都有其独特的用途和应用场景。基本的选择器包括元素选择器(也称类型选择器)、类选择器、ID选择器、属性选择器、伪类和伪元素选择器。

  • 元素选择器 :根据元素名称来选择元素,如 p 选择所有的 <p> 元素。
  • 类选择器 :根据元素的class属性来选择,如 .class 选择所有class属性为"class"的元素。
  • ID选择器 :根据元素的ID属性来选择,如 #id 选择ID属性为"id"的元素。
  • 属性选择器 :根据元素的属性来选择,例如 [attribute='value'] 选择所有具有该属性和值的元素。
  • 伪类选择器 :用于选择元素的某种特定状态,如 :hover 选择鼠标悬停的元素。
  • 伪元素选择器 :选择元素的特定部分,如 ::first-line 选择元素的第一行文本。

5.1.2 层叠与继承规则的应用

CSS层叠和继承是决定哪些样式被应用于HTML元素的两个核心概念。层叠规则决定了当有多个规则应用于同一元素时,哪个规则将被采纳。通常,更具体的CSS选择器的规则会被采用。

继承规则决定了某些属性值是否会被子元素继承。不是所有的CSS属性都是可继承的。例如, color font-family 属性通常是可继承的,而 width border 则不是。

利用层叠和继承规则,可以设计出更加灵活和可维护的CSS。例如,通过设置通用的样式在一个较高层级的选择器,然后通过更具体的选择器覆盖这些样式,可以使得CSS更加具有可读性和可管理性。

5.2 正文内容定位策略

5.2.1 识别与提取正文标签

提取网页的正文内容是许多网页数据抓取任务中的核心步骤。一般来说,网页的正文内容通常被包含在某些特定的HTML标签中,如 <article> <section> <div> 等。这些标签通常会伴随一些特定的类名,如 "entry" "content" 等。

通过CSS选择器可以准确地定位这些元素,从而提取出网页正文。例如,如果正文内容包含在具有 "main-content" 类的 <div> 标签内,那么可以使用 div.main-content 这个选择器来定位和提取正文。

// 使用jQuery选择器来提取正文内容
var content = $('div.main-content').html();
console.log(content);

5.2.2 提高定位准确率的方法

在复杂的网页中,可能会出现多个 <div> 或其他标签具有相同的类名。在这种情况下,需要采取更精细的策略来提高定位的准确率。

一种方法是利用更具体的CSS选择器。例如,如果正文内容的外层还有一个 <article> 标签,可以使用 article div.main-content 来确保定位的准确性。此外,利用属性选择器和伪类也可以进一步缩小选择范围。

// 使用更具体的选择器
var content = $('article div.main-content').html();
console.log(content);

另一策略是分析网页的DOM结构,找到正文内容的独特标识。例如,正文标签内可能包含特定的子元素或者位于特定的兄弟元素附近。根据这些特征,可以构造出更加复杂但精确的选择器。

最后,对于动态加载的网页内容,需要结合JavaScript执行环境和API来模拟用户交互,以确保抓取到完整的动态内容。

// 使用Selenium等自动化工具模拟用户交互
var driver = new webdriver.Builder().forBrowser('chrome').build();
driver.get('http://example.com');
// 模拟滚动加载更多内容
driver.executeScript('window.scrollTo(0, document.body.scrollHeight);');
// 等待内容加载完成
Thread.sleep(3000);
// 提取正文内容
var content = driver.findElement(By.css('article div.main-content')).getText();
console.log(content);

通过以上策略,可以有效地提高正文内容定位的准确率,从而为后续的数据处理和分析工作打下坚实的基础。

6. 文本清洗与内容权重计算

6.1 文本清洗的必要性与方法

在提取网页正文内容之后,文本清洗成为了提升内容质量的关键步骤。文本清洗能够去除无用的标记、噪声文本、特殊符号以及重复信息,确保提取到的内容是干净且有用的。这种方法对于提高信息提取的准确性及后续内容处理的效率至关重要。

6.1.1 清洗流程与常见问题

清洗文本的主要流程包括去除HTML标签、移除特殊字符、过滤空白行和空格以及纠正编码问题。在实际操作过程中,常见的问题有HTML标签嵌套复杂难以清理干净,特殊字符的识别和处理,以及不同语言编码导致的乱码问题。

以下是一个简单的文本清洗示例,使用Python语言进行操作:

import re

def clean_text(raw_text):
    # 移除HTML标签
    text = re.sub(r'<[^>]+>', '', raw_text)
    # 移除特殊字符(例如:&amp; 等)
    text = re.sub(r'&[^;]+;', '', text)
    # 移除空白行
    text = re.sub(r'\n\s*\n', '\n', text)
    # 简单的编码错误修正
    text = text.encode('ascii', 'ignore').decode('ascii')
    return text

raw_text = """
<html>
    <head><title>测试页面</title></head>
    <body>
        <p>这是一个测试的段落。</p>
        <p>这个段落包含特殊字符:&amp;©</p>
    </body>
</html>

cleaned_text = clean_text(raw_text)
print(cleaned_text)

6.1.2 清洗技术的实际应用案例

在实际应用中,文本清洗技术被广泛用于搜索引擎索引、数据分析和机器学习模型的训练。例如,在构建一个新闻摘要系统时,首先通过文本清洗去除HTML标签和特殊字符,然后应用自然语言处理技术提取关键词,以此来生成摘要。

6.2 内容权重的计算模型

内容权重计算模型是进一步提升文本提取质量的重要工具。通过权重模型可以对文本中的不同部分进行评估,识别出哪些是更为核心的内容。这在信息检索和内容推荐系统中尤为重要。

6.2.1 权重计算的理论基础

权重计算通常基于信息重要性的评估,包括词频、词位、句子位置等因素。例如,出现在标题或段落开头的词语往往比在段落中间的词语重要。权重计算可以通过统计学方法、机器学习算法或者二者结合的方式实现。

6.2.2 实现内容价值评估的算法

下面是一个简单的基于词频的内容权重计算示例:

from collections import Counter

def calculate_weight(text):
    # 分词处理
    words = text.split()
    # 统计词频
    word_counts = Counter(words)
    # 计算词频权重
    max_count = max(word_counts.values())
    weights = {word: (count / max_count) for word, count in word_counts.items()}
    return weights

text = "这是一个测试文本 用于展示如何计算文本中各单词的权重"
weights = calculate_weight(text)
print(weights)

在上述例子中,我们首先对文本进行分词处理,然后统计词频,并将每个词的词频与最高词频的比值作为其权重。这样处理后可以用于进一步的文本分析,比如关键词提取或者文本摘要生成。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:网页正文提取器是一款旨在高效提取网页主要信息的工具,可以去除非正文元素如广告和导航。软件利用对大型门户网站的结构分析,总结特征并应用到新网页的快速内容提取中。核心技术包括HTML解析、CSS选择器定位、文本清洗、内容权重计算、模式识别、智能过滤以及自适应优化。正文提取器v1.0为大数据处理和信息提取带来便捷,尤其适用于研究人员和SEO专业人员,提高工作效率并减少处理网页的困扰。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值