【NOIP2004P】FBI树
问题描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树[1],它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
T的根结点为R,其类型与串S的类型相同;
若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历[2]序列。
输入格式
第一行是一个整数N(0 <= N <= 10),第二行是一个长度为2N的“01”串。
输出格式
包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。
样例输入
3
10001011
样例输出
IBFBBBFIBFIIIFF
提示
对于40%的数据,N <= 2;
对于全部的数据,N <= 10。
思路:
一个远古题。根据题意两分即可。
每次分成两段,直到只剩下两个字符,然后根据规则拓展,然后返回值。每次根据返回的值再次拓展输出即可。
Code:
#include
using namespace std;
int n, len;
string st;
char fbi(int l, int r) {
if (l == r) {
cout << st[l];
return st[l];
}
int mid = (l + r) >> 1;
char ch1 = fbi(l, mid);
char ch2 = fbi(mid + 1, r);
if (ch1 == ch2) {
cout << ch1;
return ch1;
}
else {
cout << "F";
return 'F';
}
}
int main(){
freopen("fbi.in","r",stdin);
freopen("fbi.ans","w",stdout);
cin >> n;
cin >> st;
len = st.size();
for (int i = 0; i < len; i++)
if (st[i] == '0') st[i] = 'B';
else st[i] = 'I';
fbi(0, len - 1);
cout << endl;
return 0;
}