归并排序的优点不说了。
做归并排序之前,我先试着将两个有序数组进行排序,合并成一个有序数组。
思路:定义好两个有序数组,理解的时候我先思考了数组只有一个数组的排序,然后是两个元素的数组的排序,思路就有了,先比较两个数组的首元素,谁更小就放入结果数组里面,然后指针下移,继续比较,直到有一个数组为空,停止比较,因为是有序数组,那么不为空的数组后面的元素都比之前存入结果数组的要大,且是有序的,因此,只需将后面的数组存入结果数组即可。
接下来是代码实现:
/*
* 分治算法利用
* 两个有序数组的合并
* 将有序数组i,数组j,合并成c
*/
public Integer[] sort(Integer[] i, Integer[] j, Integer[] c){
c = new Integer[i.length+j.length];
int i1 = 0; //i的数组指针
int j1 = 0; //j的数组指针
int c1 = 0; //c的数组指针
while(i1 < i.length&&j1 < j.length){
if(i[i1] > j[j1]){
c[c1++] = j[j1];
j[j1++] = null;
}else{
c[c1++] = i[i1];
i[i1++] = null;
}
}
/*
* i之后还有元素
*/
while(i1
c[c1++] = i[i1];
i[i1++] = null;
}
/*
* j之后还有元素
*/
while(j1 < j.length){
c[c1++] = j[j1];
j[j1++] = null;
}
return c;
}
以上实现了将两个有序数组的合并,而归并排序,那么将一条无序数组分组成任意多个有序数组即可,并不需要确认是否是有序数组,一个数组里一个元素肯定是有序的,那么我要做的只是,递归实现数组分解,然后将有两个序数组合并。
将一个数组分解,可以用分治的方法,定义头,尾,和中间指针,然后下次的递归,只需变换中间指针即可。
而排序最开始只需要比较头部的一个元素和尾部的一个元素;
依次向上递归。
算了,贴代码吧。
public int[] mergeSort(int[] num,int first,int last){
int mid = (first+last)/2;
if(first < last){
mergeSort(num,first,mid);
mergeSort(num,mid+1,last);
merge(num,first,mid,last);
}
return num;
}
public void merge(int[] num,int first,int mid,int last){
int _left = first; //左指针
int _right = mid+1; //右指针
int[] temp = new int[last - first + 1];
int temp_p = 0;
while(_left<=mid&&_right<=last){
if(num[_left]
temp[temp_p++] = num[_left++];
}else{
temp[temp_p++] = num[_right++];
}
}
while(_left<=mid){
temp[temp_p++] = num[_left++];
}
while(_right<=last){
temp[temp_p++] = num[_right++];
}
_left = 0;
//因为没有返回数组,所以排序好的数组应该放在num数组里面,直接覆盖即可,注意下标。
for(int i : temp){
num[(_left++)+first] = i;
}
}
first,last为数组头尾指针。