matlab笔记
目录 P5第一章——matlab 概述与格式 P10eps 浮点相对精度inf 无穷大i 或 j 虚数单位pi 圆周率nan 非数nargin 函数输入变量数目nargout 函数输出变量数目realmax 最大正实数realmin 最小正实数real( ) 实部imag( ) 虚部abs( ) 绝对值angle( ) 复数的相位角**matlab 直接计算时给出的只有第一象限的根,要想求其他象限的根,用 P20 的方法**enter 会执行命令, shift+enter 可以暂时不执行而进行下一行编辑,但最后按 enter 会一起执行一行语句输出完,但暂时和以后都不想执行该语句,可以打‘;’号,再直接按 enter,进行下一行编写所以编程时,一般还是会打‘;’号,再按 enter 继续编写**循环命令时,如 for end 语句,在循环体内可以直接按 enter 进入下一行编辑**.作为标识符表示命令分行输入,不能出现在两个单引号中间at 对显示格式进行设置,默认显示格式为短格式,保留 4 位有效数字,具体调用方法见 P21diray xxx(名字任取) diray off 可以将命令窗口中的内容全部记录为 ASCII 文件保存下来,方便以后使用。**键盘上的 Tab 键是神技,可以输入函数或对象的前几个字母,然后按 tab 键,即可自动完成输入第二章——矩阵和数组 P29**初值:步长:终值zeros 所有元素为 0 的矩阵diag 对角矩阵ones 所有元素为 1 的矩阵eye 单位矩阵magic 魔方矩阵pascal pascal 矩阵rand 随机均匀分布矩阵randn 随机正态分布矩阵randperm 全是整数元素随机分布的矩阵rand( state ,0) 用随机函数产生相同矩阵以验证操作结果**B=a>5 c=a(B) 就是逻辑 1 标识法访问矩阵 a 中大于 5 的元素abs(x) 纯量的绝对值或向量的长度sqrt(x) 开平方conj(z) 复数的共轭round(x) 四舍五入的最近整数fix( x) 舍去小数变整数mean(x) 平均值median(x) 中位数std(x) 标准差sum(x) 元素总和更多常用函数三角函数见 P35A. 非共轭转置 A 共轭转置A.*B A,B 中对应元素相乘 A*B 线性代数的乘法规则**矩阵的翻转旋转见 P39**函数 sparse() ,将普通矩阵变为稀疏矩阵,减少内存使用。full() 则可以逆变换。**多维数组见 P47 全下标, ones,zeros,rand,randn,cat,repmat,reshape**多项式表达式 见 P53多项式系数要以降幂的顺序排列。P=poly(A)来生成多项式系数向量。A 为方阵,则 P 为方阵的特征多项式,若 A 为向量,则 A 的元素被看做多项式 P 的根PA=poly2sym(P, s ) 可以以 s 为未知量,直观显示多项式**多项式运算函数 见 P54 conv 多项式乘法 deconv 除法 polyder 求导 polyint 积分 等第三章——数据类型 P56**逻辑类型矩阵 logical 函数,将任意类型数组转换成逻辑类型,非零为真,零为假true 产生逻辑真值数组false 产生逻辑假值数组**逻辑运算符.函数返回的是逻辑值,但多数数学运算不支持逻辑值**逻辑运算有短路作用**所有字符串都要用两个单引号括起来,空格也是字符**str2mat 创建多行串数组时,不用担心每一行字符个数是否相等 P61**strrep 字符串的查找与替换 P62**不同进制数字的转化和数字与字符串的转化函数 P63如 num2str ,str2num**structure 数组的创建 P66直接创建:名称.子域名 如:employee.name=davidstruct 函数: student=struct( filed ,xxx, filed ,xxx)**cell 数组,即元胞数组 P71和一般矩阵最大的区别就是,用{ }创建创建方法和一般矩阵类似**is 开头的函数名,一般为逻辑判断函数**map 容器 P76是一种快速键查找数据结构,提供个体元素寻访map1=containers.Map({ filed .},{xxx})第四章——数值计算 P84**因式分解 det(A) 求方阵行列式rank(A) 求方阵的秩inv(A) 求方阵逆矩阵trance(A) 求矩阵的对角线元素之和*cholesky 因式分解法,前提条件是满秩,将对称正定矩阵分解成上三角矩阵和其转置矩阵的乘积,A=RR a=chol(a)可以将 a 矩阵变成上三角矩阵 b*LU 因式分解可以得到上下三角阵,不唯一,每对三角阵相乘会得到原矩阵[l,u]=lu(A) 就可以得到一对上下三角矩阵 l 和 u*QR 因式分解前提是正交矩阵,即满足 A A=1.将矩阵分解成单位正交矩阵和上三角矩阵。 A=QR.[Q,R]=qr(A) [Q,R,P]=qr(A) P 为置换矩阵,R 的对角线元素按降序排列**矩阵特征值对于方阵 A,若有数 a 使得 AX=aX 成立,则 a 为特征值, X 为特征向量,即|A-a|=0,n个根就是矩阵 A 的 n 个特征值E=eig(A) 求矩阵 A 的全部特征值,构成向量 E[V,D]=eig(A) A 的全部特征值构成对角矩阵 D,A 的特征向量构成 V 的列向量**roots 函数用于直接对线性方程求解a=roots(A) 可以求出多项式的零点**概率统计sum(A) 若 A 为向量,则返回所有元素的和,若 A 为矩阵,返回各列的所有元素的和sum(A,dim) 返回矩阵 A 中第 dim 维的所有元素的和cumsum(A) 累计 和prod(A) 若 A 为矩阵,则返回各列所有元素的积cumprod(A) 累计 积sort(A,1 )默认为升序排序,列方向排序sort(A,2) 行方向排序sortrows 按照第一列的大小进行升序排序a=max(A) 返回矩阵中所有元素的最大值[c,i]=max(A) 返回各列元素的最大值和其下标号mean 返回每列元素的平均值median 返回每列元素的中值*std 返回每列元素的标准差 std 有两种,前面一个的除数是 n-1,后一个的除数是 n。s=std(x,flag) 若 flag=0,就等同于 s=std(x),若 flag=1,则按后一个公式求标准差s=std(x,flag,dim) var 返回每列元素的方差,用法和 std 一样cov 用于求协方差矩阵,cov(x1,x2)=E[(x1-u1)(x2-u2)],u1=E(x1),u2=E(x2)corrcoef 用来计算矩阵相关系数 见 p102*概率分布函数 P102二项分布 binopdf 泊松分布 poisspdf正态分布 normpdf 均匀分布 unifpdff 分布 fpdf t 分布