套汇问题算法思想_典型算法思想与应用2|迭代法与近似求函数值和最大公约数问题...

本文介绍了迭代法在解决套汇问题中的应用,包括二分法求函数值、牛顿迭代法求平方根以及欧几里德辗转相除法。通过迭代变量、迭代关系式和迭代过程控制,阐述了迭代算法的原理和步骤,并提供了相关算法的实例代码。
摘要由CSDN通过智能技术生成

迭代法(Iteration)也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

// 自然数连加和int adds1(int n){int sum = 0;for(int i=1;i<=n; i++)sum+=i;       // 迭代法return sum;}int adds2(int n){return (1+n)*n/2;  // 直接法}

利用迭代算法解决问题,需要做好以下三个方面的工作:

① 确定迭代变量

在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

② 建立迭代关系式

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键。

递推法也是一种利用旧值推新出新值的方法,但与迭代法不同的时,递推法往往会有一个初始条件,就如同分段函数一样,初始条件是递推表达式之一,而迭代法一般使用一个单一表达式。

③ 对迭代过程进行控制

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。

迭代法又分为精确迭代和近似迭代。前者如辗转相除法,后者如“二分法”、"牛顿迭代法”来近似求函数值的问题。

1 二分法求函数值

对于函数y=f(x),设x的取值区间为[a,b]满足f(a)*f(b)<0k,也就是是f(x)在x的取值区间有0值,通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。

8b366886e5bef951dc77ab0ccaf068d5.png

用二分法求函数f(x)零点近似值的步骤如下:

1.1 确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ。

1.2 求区间(a,b)的中点c。

1.3 计算f(c)。

(1) 若f(c)=0,则c就是函数的零点;

(2) 若f(a)·f(c)<0,则令b=c;

(3) 若f(c)·f(b)<0,则令a=c。

(4) 判断是否达到精确度ξ:即若|a-b|

while (fabs(b-a) > e){    double c = (a+b)/2.0;    if (f(a)* f(c) < 0)        b = c;    else        a = c;}

测试代码:

#include #include #include #include double f(double x) // 测试函数f(x)=1+x-x*x*x{    return 1+x-x*x*x;}double bisect(double a,double b){double e = 1e-5;    if (fabs(f(a)) <= e)        printf("solution: %lg", a);    else if (fabs(f(b)) <= e)        printf("solution: %lg", b);    else if (f(a)*f(b) > 0)        printf("f(%lg)*f(%lg) > 0 ! need <= 0 !", a, b);    else    {        while (fabs(b-a) > e)        {            double c = (a+b)/2.0;            if (f(a)* f(c) < 0)                b = c;            else                a = c;        }       return (a+b)/2.0;    }}int main(){    printf("solution: %lg", bisect(1,2)); // solution: 1.32472    getchar();    return 0;}

二分法求平方根:

double sqrt1(double x) // 二分法 {     double EPSINON = 1e-5;    double low = 0.0;    double high = x;    double mid = (low + high) / 2;    while ((high - low) > EPSINON){        if (mid*mid > x)            high = mid;        else            low = mid;        mid = (high + low) / 2;    }    return mid;}

2 牛顿迭代法求平方根

令f(x)=x^2-n,如图所示:

64a9e50261428cc7be823bb5a023bff7.png

取x0,如果x0不是解,做一个经过(x0,f(x0))这个点的切线,与x轴的交点为x1。

同理,如果x1不是解,做一个经过(x1,f(x1))这个点的切线,与x轴的交点为x2。

依次类推。

以这样的方式得到的 xi 会无限趋近于 f(x)=0 的解。

(f(x)-f(xi))/(x-xi)=f’(x),f’(x)是斜率也是f(x)的导函数,即f’(x)=2x。

化简得:f(xi)=f(x)-f’(x)(x-xi),令f(xi)=0得:

(x²-n)-2x(x-xi)=0

持续化简得:

x² - n - 2x² + 2xxi=0

2xxi=x² + n

2xi=x+n/x

xi=(x+n/x)/2 // 迭代表达式

double sqrt2(double x)  // 牛顿迭代法{    if (x == 0) {        return 0;    }    double last = 0.0;    double res = 1.0;    while (res != last)  // 判断前后两个解 xi 和 xi-1 是否无限接近    {        last = res;        res = (res + x / res) / 2;  // 迭代表达式    }    return res;}

3 欧几里德辗转相除法

最经典的迭代算法是欧几里德辗转相除法,用于计算两个整数a,b的最大公约数。枚举法虽然也可以求出最大公约数,但效率明显较差。

辗转相除法的计算原理:

gcd(a,b) = gcd(b,a % b)

a可以表示成a = kb + r,则r = a % b。假设d是a,b的一个公约数,则有 a%d==0,b%d==0,而r = a - kb,因此r%d==0(因为a%b==0,kb%d==0) ,因此d是(b,a % b)的公约数。

同理,假设d 是(b,a % b)的公约数,则 b%d==0,r%d==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。

因此(a,b)和(b,a % b)的公约数是一样的,其最大公约数也必然相等。

欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止:

#include using namespace std;int gcdIter(int a,int b){    if (a<=0 || b<=0)        return 0;    int temp;    while (b > 0)    {        temp = a % b; // 迭代关系式        a = b;        b = temp;    }    return a;}int gcd(int a,int b){return b?gcd(b,a%b):a;} // 一次gcd()调用有a=b,b=a%bint main(){cout<

从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。

需要注意的是,一些问题可以用迭代法解决,也可以用递归法解决,如上面的辗转相除法。其迭代表达式隐含在函数递归调用的参数表达式中,通过隐式栈存储,其返回值也是如此。

附迭代法求平方根代码:

#include #include using namespace std;double sqrt1(double x) // 二分法 {     double EPSINON = 1e-5;    double low = 0.0;    double high = x;    double mid = (low + high) / 2;    while ((high - low) > EPSINON){        if (mid*mid > x)            high = mid;        else            low = mid;        mid = (high + low) / 2;    }    return mid;}double sqrt2(double x)  // 牛顿迭代法{    if (x == 0) {        return 0;    }    double last = 0.0;    double res = 1.0;    while (res != last)  // 判断前后两个解 xi 和 xi-1 是否无限接近    {        last = res;        res = (res + x / res) / 2;  // 迭代表达式    }    return res;}double sqrt3( double x ) {    float   y;    float   delta;    float   maxError;     if ( x <= 0 )        return 0;        y = x / 2;              // initial guess     maxError = x * 0.00001; // refine     do {        delta = ( y * y ) - x;        y -= delta / ( 2 * y );    } while ( delta > maxError || delta < -maxError );     return y;}double sqrt4(double x)        // 引自John Carmack 的Quake引擎中的源代码{         if(x == 0) return 0;     float result = x;     float xhalf = 0.5f*result; // float后加f转换成double类型    int i = *(int*)&result; i = 0x5f3759df - (i>>1);    // 通过预先猜测的一个神奇数字 0x5f3759df, 来将迭代次数降到极限的一次 // (另外通过整形数的移位来进一步加速)         result = *(float*)&i;     result = result*(1.5f-xhalf*result*result);    result = result*(1.5f-xhalf*result*result);     return 1.0f/result; }int main(){    cout<

-End-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值