一、前导知识
1、对顶角和邻补角的定义
2、握手模型(点击可查看)
二、例题呈现
【例】下面各图中的下面各图中的直线都相交于一点
(1)请观察图形并填写下表:
(2)若n(n为大于1的整数)条直线相交于一点,则共有多少对对顶角?
共有多少对邻补角?
【分析】
方法1:数数,找规律
2条直线相交于一点会形成2对(即2×1)对顶角,4对(即2×2×1)邻补角
3条直线相交于一点会形成6对(即3×2)对顶角,12对(即2×3×2)邻补角
4条直线相交于一点会形成12对(即4×3)对顶角,24对(即2×4×3)邻补角
...
n条直线相交于一点会形成n(n-1)对对顶角,2n(n-1)对邻补角
方法2:对顶角和邻补角的定义+"握手模型"
(1)对顶角:有一个公共顶点,并且两边互为反向延长线的两个角,互为对顶角
(2)邻补角:有一条公共边(也有一个公共顶点),且另一边互为反向延长线的两个角,互为邻补角
从定义中我们发现:无论是一对对顶角,还是一对邻补角,它们都有1个公共顶点,那么当两条直线相交时,1个交点就决定了2对对顶角和4对邻补角,我们只需要知道n条直线相交最多形成几个交点就可以了,(当然这道题中n条直线相交于一点,我们要把其看作若干个交点重合了)
三、类题练习
1、两条直线相交只有______个交点;三条直线两两相交,最多有______个交点;n条直线两两相交,最多有______个交点。
2、n条直线两两相交,会形成________对对顶角,________对邻补角。
------------------------------------------------------------
【参考答案】
1、1;3;n(n-1)/2
2、n(n-1);2n(n-1)(分析方法与例题类似,也就是说无论是否相交于一点结论是一样的)
------------------------------------------------------------
欢迎关注Leo老师的微信公众号
欢迎加入Leo老师发起的公益辅导QQ群(群号:192551958)
跟众多"大牛"老师/学霸一起开启精彩的学习之旅吧!