n条直线相交最多有几个邻补角_【培优系列】[七下] 相交线与平行线(1)——对顶角与邻补角(1)...

这篇博客介绍了对顶角和邻补角的定义,并通过握手模型分析了n条直线相交于一点时,最多能形成多少对对顶角和邻补角。通过数数和定义解析,得出n条直线相交有n(n-1)对对顶角和2n(n-1)对邻补角。此外,提供了类题练习和参考答案,帮助读者加深理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

31e5556653f9cd0a0a9c524144e1216c.png

一、前导知识

1、对顶角和邻补角的定义

2、握手模型(点击可查看)

二、例题呈现

【例】下面各图中的下面各图中的直线都相交于一点

9260fbbcf2a017eaae095fa60f27b488.png

(1)请观察图形并填写下表:

837431e646afe8d5263d8c734b6ab78a.png

(2)若n(n为大于1的整数)条直线相交于一点,则共有多少对对顶角?

共有多少对邻补角?

【分析】

方法1:数数,找规律

2条直线相交于一点会形成2对(即2×1)对顶角,4对(即2×2×1)邻补角

3条直线相交于一点会形成6对(即3×2)对顶角,12对(即2×3×2)邻补角

4条直线相交于一点会形成12对(即4×3)对顶角,24对(即2×4×3)邻补角

...

n条直线相交于一点会形成n(n-1)对对顶角,2n(n-1)对邻补角

方法2:对顶角和邻补角的定义+"握手模型"

(1)对顶角:有一个公共顶点,并且两边互为反向延长线的两个角,互为对顶角

(2)邻补角:有一条公共边(也有一个公共顶点),且另一边互为反向延长线的两个角,互为邻补角

从定义中我们发现:无论是一对对顶角,还是一对邻补角,它们都有1个公共顶点,那么当两条直线相交时,1个交点就决定了2对对顶角和4对邻补角,我们只需要知道n条直线相交最多形成几个交点就可以了,(当然这道题中n条直线相交于一点,我们要把其看作若干个交点重合了)

eee519f91a452247d2c1976bf8bddcf3.png

三、类题练习

1、两条直线相交只有______个交点;三条直线两两相交,最多有______个交点;n条直线两两相交,最多有______个交点。

2、n条直线两两相交,会形成________对对顶角,________对邻补角。

------------------------------------------------------------

【参考答案】

1、1;3;n(n-1)/2

2、n(n-1);2n(n-1)(分析方法与例题类似,也就是说无论是否相交于一点结论是一样的)

------------------------------------------------------------

欢迎关注Leo老师的微信公众号

5e62f362398dcb98b6f10226e1cdf4f9.png

欢迎加入Leo老师发起的公益辅导QQ群(群号:192551958)

跟众多"大牛"老师/学霸一起开启精彩的学习之旅吧!

f9c6f12679404912312a79e145c77373.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值