附录A 计算机科学与技术学科综合考试人工智能真题
1999年计算机科学与技术学科综合考试真题
课程Ⅳ 人工智能原理
一、选择题(共4分)
人工智能作为一门学科,在( )年诞生于( )。LISP语言是( )年提出的,MYCIN的诞生地
是( )。
第1、3空格候选答案:
(A)1870 (B)1876 (C)1880 (D)1886 (E)1890 (F)1895 (G)1935
(H)1940 (I)1946 (J)1950 (K)1956 (L)1960(M)1970(N)1980
第2、4空格候选答案:
(1)Dover (2)LasVega (3)RiceUniversity
(4)NewYork (5)Houston (6)Chicago
(7)Boston (8)London (9)Dartmouth
(10)Seartie (11)HarvardUniversity (12)OxfordUniversity
(13)UniversityofCamoridge (14)Birmingham (15)JohnsHopkinsUniversity
(16)Pennsylvania (17)RAND (18)IBM
(19)SanJose (20)FranklinandMarshallCollege (21)Philadelphia
(22)Denver (23)Montreal (24)Berkeley
(25)CarnegieMelonUniversity (26)Michigan (27)MITs
(28)KansasCity (29)Providence (30)StanfordUniversity
二、填空题(共10分)
1.近年来,对人类智能的理解上形成了两种不同的观点,一种观点称做( )主义,另一种观
点,即( )的观点,称做( )主义。
2.常用的知识表示方法有逻辑表示法、( )、( )、( )、( )
等。
3.下图为Simon提出的学习模型,请填充空白框。
三、(5分)将下式化为不含量词的子句
~xyzuP(x,y,z,u)
五、(10分)已知:规则可信度
A→X CF(X,A)=0.8
B→X CF(X,B)=0.6
C→X CF(X,C)=0.4
X∧D→Y CF(Y,X∧D)=0.3
证据可信度CF(A)=CF(B)=CF(C)=CF(D)=0.5。
X、Y的初始可信度CF0(X)=0.1;CF0(Y)=0.2。
要求用MYCIN的方法计算:
1.结论X的可信度CF(X);
2.结论Y的可信度CF(Y)。
2000年计算机科学与技术学科综合考试真题
课程Ⅳ 人工智能原理
一、选择与填空(共10分,每空0.5分)
1.命题逻辑下,可以归结(消解、resolution)的子句C1和C2,在某解释下C1和C2为真。则其归结式
(消解式、resolvent)C在该解释下( )。
A.必真 B.必假 C.真假不能断言
2.表达式G是不可满足的,当且仅当对所有的解释( )。
A.G为真 B.G为假 C.G为非永真(invalid)
3.MYCIN系统中规定,证据A的可信度CF(A)的取值为( )。
A.CF(A)>0 B.0≤CF(A)≤1 C.-1≤CF(A)≤1
4.主观Bayes推理中,规定似然比(Likelihood)LS和LN应( )。
A.≥0 B.≤0 C.>0
5.在诞生初期,人工智能被定义为这样一个计算机科学的分支:它是研究( )。人工智能程
序与通常意义下的程序比较它具有以下四个特点:( ),( ),( ),( )。
6.用反演(refutation)归结证明定理,证明过程是这样结束的。若( ),则定理得证;若( ),
则证明失败。
7.在语义网络中,为了进行节点(结点,node)间节点属性的继承推理,规定了两个约定俗成的链(弧,
arc),命名为( )和( ),用来标明类与子类、类与个体之间的关系。
8.产生式规则与蕴涵规则的区别在于:产生式规则( ),而蕴涵规则( )。
9.MYCIN推理中,对证据的可信度CF(A)、CF(A1)和CF(A2)之间,规定如下关系:CF(~A)=
( ),CF(A1∧A2)=( ),CF(A1∨A2)=( )。
10.主观Bayes推理中,规则E→H的不确定性是以似然比LS和LN描述的。LS表示了规则成立的
( )性;LN表示了规则成立的( )性。
二、化下列逻辑表达式为不含存在量词的前束形(prenexform)(5分)
(X)(Y){(Z)[P(Z)∧~Q(X,Z)]→R(X,Y,f(a))}
四、对结论做假设H,有证据E1和E2,规则R1和R2。(10分)