一个含多参数分段函数的连续性与可导性讨论
题目: 设, 定义函数
(1) 讨论当满足什么条件时,函数在0点连续。
(2) 讨论当满足什么条件时,函数在0点可导。
(3) 讨论当满足什么条件时,函数的导数在0点连续。
注记: 本题应该是有点瑕疵的,当取不同值时,该函数的定义域是不一样的。比如:时,定义域为,当时,函数定义域为. 但是无论怎样,函数在有定义。 讨论该函数在0点是否右连续总是有意义。
解:
(1)连续性讨论:
- 注意倒时,是时的无穷小量(其极限为0,严格说),而在时是有界量,所以
因此当, 活该函数连续(右连续)。
- 当时,函数退化为
如果, 则按照海涅定理(归结原理)得到
不存在所以函数在0点间断,该点属于第二类间断点。
如果, 则含税退化为
得到
函数在0点间断,该点属于第一类间断点。
如果, 则
函数在点连续。
- 当时, 注意为无穷大量, 如果,则按照海涅定理(归结原理),知道
所以函数在0点间断,该点属于第二类间断点。
如果, 则当时,为无穷小量且
因此按照求极限的“等价无穷小替换方法”得到
可以知道当时,函数在点连续,当时函数在0点间断,该点属于第一类间断点,当时函数在0点间断,该店属于第二类间断点。
结论一: 该函数在点连续性如下图所示:

结论二: 由于该函数在非0点及其左右边函数表达式均为是初等函数,根据初等函数在其定义区间内总是连续的性质,所以该函数在非0点连续。
(2)讨论函数可导性
根据导数定义,需要考虑极限
是否存在?该极限存在,则在0点可导,该极限不存在,则在0点不可导。
根据前面的讨论知道:
当,,上面极限存在,所以函数在0点可导, 。
当时,上面极限存在,所以函数在0点可导,,当是,上面极限存在,所以函数在0点可导,.
当时,上面极限存在,所以函数在0点可导,, 当,时,上面极限存在,所以函数在0点可导,
其它情况下,函数在0点不可导。
总结一: 函数在0点可导的范围
其中
其它情况不可导。
总结二: 在非0点的附近(邻域),函数是初等函数, 所以按照求导公式得到
所以
(3)讨论导数的连续性
导数在非零点的邻域函数是初等函数,导数必连续。 函数在0点,从导数的表达式
要考虑导数在0点的连续性,需要考虑极限
是否存在,是否等于?
结论一: 当时,上面极限为0,所以导数在, 时,导数在0点连续。
当满足或者时,导数的可导性留给读者完成!
【讨论完毕】