如何将矩阵化为约旦标准型_线性代数预习自学笔记-22:若尔当标准型

上一篇:线性代数预习自学笔记-21:根子空间分解

一、若尔当块与若尔当标准型

简单总结一下我们在上一篇中得到的成果:一个矩阵不能对角化的原因实质上是其所有特征子空间的直和不能充满整个作用空间,因而我们使用了“根子空间”这个推广概念(特征子空间是它的子空间),并发现任一方阵(线性算子)的所有根子空间的直和就是整个空间,做到了特征子空间做不到的事情;而可对角化矩阵,就是那些对于其任一特征值

,都有特征子空间=根子空间的矩阵。

仔细琢磨,这似乎与我们前面提到的一个论断非常相似:方阵任一特征值的几何重数小于等于代数重数,矩阵可对角化当且仅当其所有特征值的几何重数都等于代数重数。

据此提出关于代数重数的意义的一个猜想?

不过暂时将这个猜想放在一旁,我们先解决一个近在眼前的问题。既然根子空间的直和是全空间,那么就可以通过根子空间来寻找空间的一组基;回想我们定义根子空间的动机——推广对角化的概念,让所有矩阵都能相似于某类形式简洁的矩阵。这就是说,对每个线性算子,都能找到一组基,使得它在这组基下的表达是最简的。

因此,需要解决的问题就是:这类“形式简洁”的矩阵究竟是什么形式(即如何找这组基)?是否真的能使所有矩阵都相似于这类矩阵?

要解决这两个问题,首先留意由于根子空间的和是直和,所以我们如果对于每个根子空间找到一组基,那么将每个根子空间的基“拼”到一起,就是全空间的一组基了,因此下面我们就只需关注向量空间

上的线性算子
的某个根子空间
。而且由于根子空间是不变子空间,所以我们可以随时将
的作用域限制在
上,看作
上的线性算子。

既然要从根子空间中找基,那就必然要关注根子空间中的向量——广义特征向量的定义,而其中的核心就是这个式子:

借助对这个式子的变形,我们还提出了广义特征向量链(下面简称特征向量链):

链上的所有向量也都在

中,而这条链最后的向量
,就是线性算子
的特征向量;并且我们还知道(定理21.1)这条链里的向量都是线性无关的。

当然,这条链可能还可以往前拓展,也就是某个存在

,使得

或等价地写成

但由于

是有限维的,因此这条链不会无限拓展下去,它必然有一个“头”和一个“尾”,链尾部就是一般的特征向量。(特征向量链也可以看作是从一般特征向量往头部“逆生长”的结果。)

这样一来,假设我们要开始找

的一组基,若我们找到第一个向量
,它是包含着它的特征向量链的“头”(从而这样的链是唯一的),那么整个链中的元素都可以加入到这组基里面。对于这些向量,不妨设
的指数为
(这意味着链中有
个元素),并令
,那么就有

假设已经找到了一组包含

的基,
在这组基下的表示矩阵是
,且可知
在这组基下的坐标向量就是
,因而上式可改写为

写成矩阵形式就是

这样就得到了

的显式表达,可以发现它与对角矩阵有些相似,表现为对角线上都是特征值
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值