全文共1794字,预计学习时长15分钟

图片来源:pexels.com
线性回归是数据科学中最简单也是最重要的算法。无论面试的工作领域是数据科学、数据分析、机器学习或者是量化研究,都有可能会遇到涉及线性回归的具体问题。要想熟练掌握线性回归,需要了解以下知识。
注:本文仅涉及理论而非代码。

了解所做假设

图片来源:pexels.com
本文假设读者对线性回归有一定了解,但在开始介绍之前还是要回顾下线性回归的公式和假设。假设现在有N个观察值,输出向量Y(维度为Nx1),p输入X1,X2,...,XP(每个输入向量维度都为Nx1) 。线性回归假设回归函数E(Y |X)在输入中是线性的。因此,Y满足以下条件:

公式中ε代表误差。线性假设是线性回归中唯一必须的假设——稍后本文会添加更多假设以推断更多结果。
虽然以上公式似乎看上去简单,但要找到系数并不容易(β值)。我们将此称为带有‘^’的β值为系数估计值。

了解关键指标定义
以下是三个你必须要知道的指标(须牢记):
· RSS是残差平方和。