回归分析beta值的标准_数据科学中最简单也最重要的算法:线性回归

线性回归是数据科学的基础,涉及找到最佳系数β值以最小化残差平方和RSS。了解线性回归的假设、关键指标如RSS、TSS和R²,以及如何计算β值。当X⊤X非满秩时,可使用岭回归等正则化技术。此外,统计检验如t值和F值用于评估系数显著性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文共1794字,预计学习时长15分钟

8e015e84174bcfdb15fb4b66d0d0a8c7.png

图片来源:pexels.com

线性回归是数据科学中最简单也是最重要的算法。无论面试的工作领域是数据科学、数据分析、机器学习或者是量化研究,都有可能会遇到涉及线性回归的具体问题。要想熟练掌握线性回归,需要了解以下知识。

注:本文仅涉及理论而非代码。

028ae2fceb0288c5afb664eabe5febce.png

了解所做假设

59ccb4e9f4962fb05936c8662b37ac93.png

图片来源:pexels.com

本文假设读者对线性回归有一定了解,但在开始介绍之前还是要回顾下线性回归的公式和假设。假设现在有N个观察值,输出向量Y(维度为Nx1),p输入X1,X2,...,XP(每个输入向量维度都为Nx1) 。线性回归假设回归函数E(Y |X)在输入中是线性的。因此,Y满足以下条件:

423ae660052ee581225a757e736c3a36.png

公式中ε代表误差。线性假设是线性回归中唯一必须的假设——稍后本文会添加更多假设以推断更多结果。

虽然以上公式似乎看上去简单,但要找到系数并不容易(β值)。我们将此称为带有‘^’的β值为系数估计值。

028ae2fceb0288c5afb664eabe5febce.png

了解关键指标定义

以下是三个你必须要知道的指标(须牢记):

· RSS是残差平方和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值