希尔排序的基本介绍:
希尔排序同之前的插入排序一样,它也是一种插入排序,只不过它是简单插入排序之后的一个优化的排序算法,希尔排序也被称为缩小增量排序。
希尔排序的基本思想:
希尔排序是把数组中给定的元素按照下标的一定增量进行分组,在分组之后,对每组使用直接插入排序算法;随着增量的减少,每组包含的元素越来越多,当增量减少到1的时候,整个数组正好被分成一组,此时该算法终止。通常我们判断增量是通过:第一次的增量=数组的长度/2(取整),第二次的增量=第一次的增量/2(取整)...一直到增量为1结束。
希尔排序的示意图:
整个希尔排序我们可以通过两种方式来实现:交换法(用交换排序的思想),移动法(用插入排序的思想)。在这个例子中,我们给定的数组是int[] arr = {8,9,1,7,2,3,5,4,6,0};
(1).交换法
其中交换法是通过两种方式讲述的:分步骤的实现,整体的实现。具体的解释在代码的注释中,观看注释即可。
(1.1)分步骤的实现
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr = {8,9,1,7,2,3,5,4,6,0};
System.out.println("原始的序列:");
System.out.println(Arrays.toString(arr));
shellSort(arr);
}
//交换法
//希尔排序
public static void shellSort(int[] arr){
//第一趟排序,由于我们数组中打的元素一共有10个,所以我们第一趟选择的增量为10/2=5
int temp = 0;
for(int i=5;i
for(int j=i-5;j>=0;j-=5){ //j代表了与i对应在一个数组中的数。
if(arr[j]>arr[j+5]){ //这里面就是用来比较在同一个数组里面的数字的大小,并且为它们排序
temp = arr[j];
arr[j] = arr[j+5];
arr[j+5] = temp;
}
}
}
System.out.println("第一趟结束后的序列:");
System.out.println(Arrays.toString(arr));
//第二趟序列,这里面的增量是第一趟的增量/2=5/2=2
for(int i=2;i
for(int j=i-2;j>=0;j=j-2){ //同理,跟第一趟相同
if(arr[j]>arr[j+2]){
temp = arr[j];
arr[j] = arr[j+2];
arr[j+2] = temp;
}
}
}
System.out.println("第一趟结束后的序列:");
System.out.println(Arrays.toString(arr));
//第三趟序列,这里面的增量是第二趟的增量/2=2/2=1
for(int i=1;i
for(int j=i-1;j>=0;j=j-1){ //同理,跟第一趟相同
if(arr[j]>arr[j+1]){
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
System.out.println("第一趟结束后的序列:");
System.out.println(Arrays.toString(arr));
}
上述代码的最终结果如下:
(1.2)完整的代码
由上述代码,我们可以看到,当我们增量发生改变的时候,我们只是需要改变j的起始值以及定长的值即可,因此我们可以写出完整的代码如下:
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr = {8,9,1,7,2,3,5,4,6,0};
System.out.println("原始的序列:");
System.out.println(Arrays.toString(arr));
shellSort(arr);
}
//交换法
//希尔排序
public static void shellSort(int[] arr){
//完整的希尔排序算法
int temp = 0;
int count = 0;
//gap的值代表了就是每一趟的增量的值
for(int gap = arr.length/2;gap>=1;gap = gap/2){
for(int i=gap;i
for(int j=i-gap;j>=0;j=j-gap){ //这里面同之前的代码,只不过把增量变成了gap
if(arr[j]>arr[j+gap]){
temp = arr[j];
arr[j] = arr[j+gap];
arr[j+gap] = temp;
}
}
}
System.out.println("第"+(++count)+"趟排序后的序列是:");
System.out.println(Arrays.toString(arr));
}
}
(2).移动法
上述代码是希尔排序的选择类的写法,它由一定的缺陷,就是效率的问题,我们每一趟都需要进行比较,这样会使整个代码的时间复杂度增加。因此我们用移动法对其进行优化。代码如下:
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr = {8,9,1,7,2,3,5,4,6,0};
System.out.println("原始的序列:");
System.out.println(Arrays.toString(arr));
shellSort2(arr);
}
//对交换式的希尔排序进行优化,移动法
public static void shellSort2(int[] arr){
int count = 0;
for(int gap = arr.length/2;gap>=1;gap = gap/2){ //这里同上述代码保持不变
//下面的代码根据我们的插入算法一样,只不过之前的插入算法的增量一直是1,这里面的增量是变化的,具体参照之前一章---插入算法
for(int i=gap;i
int minIndex = i-gap; //待插入位置的下标
int temp = arr[i]; //要插入的数
while(minIndex>=0 && temp
arr[minIndex+gap] = arr[minIndex];
minIndex-=gap;
}
arr[minIndex+gap] = temp;
}
System.out.println("第"+( ++count)+"趟排序的结果:");
System.out.println(Arrays.toString(arr));
}
}
上述代码的最终结果如下: