LSB图像信息隐藏算法matlab,实验二LSB信息隐藏实验.doc

该实验使用MATLAB实现了LSB(Least Significant Bit)信息隐藏和提取,包括基本的LSB隐藏和提取以及随机选择嵌入位的方法。实验中选择了512x512灰度图像作为载体,通过计算PSNR评估了图像质量,并对隐藏信息进行了JPEG压缩和缩放攻击,分析了攻击后的误码率。实验展示了从隐藏信息到图像载体的完整过程,以及如何通过随机序列控制嵌入位来增强安全性。
摘要由CSDN通过智能技术生成

实验二LSB信息隐藏实验.doc

实验二LSB信息隐藏实验

综合评分:

【实验目的】:

掌握MATLAB基木操作

实现LSB信息隐藏和提取

【实验内容】:(请将你实验完成的项11涂“■“)

实验完成形式:

■用MATLAB函数实现LSB信息隐藏和提取

□其它:(请注明)

实验选择载体:

□ 256x256灰度图像口 256X 256RGB图像口任意大小的RGB图像

■其他512x512灰度图像64x64灰度图像

实验效果和分析:

■完成基本的LSB信息隐藏及提取

■能随机选择嵌入位进行信息隐藏及提取(考虑安全性因素)

■能够计算PSNR,分析信息隐藏图像质量

■完成对秘密信息的图像载体进行攻击

采用的攻击方法(请列出):jpeg压缩攻击,缩放resize攻击

■计算每种攻击方法提取的秘密信息误码率

□其它:(请注明)

【实验工具及平台】:

■ Windows+Matlab7.0□其它:(请注明)

【实验涉及到的相关算法】:

基本LSB信息隐藏及提取算法。

LSB信息隐藏算法:

(1) 读入并处理载体图像和水印图像,使二者大小相等。

(2)选择要替换的位平而。

(3)用bitset ()函数用水印图像替换选定的某一位平面,其屮位平面1为最不重 要面,位平面8为最重要面。

提取算法:

利用bi塩& ()函数将所嵌入的平而提収出来即可。

完成随机选择嵌入位进行LSB信息隐藏及提取算法。

隐藏算法:

(1) 将载体图像和水印图像转换为一维的

(2)产生随机数种子,产生随机序列控制信息械入位

由随机数控制,产生不同的步长,随机地嵌入水印

将图像转化为二维图像并显示出来 提収算法:

将图像转化为一维数组

产生与隐藏时相同的随机数种了

提取出被替换的位置的数值

把图像转换为二维图像并显示出来

【实验分析】:

1、完成基木LSB信息隐藏及提取

原图像为灰度图像lena_gray. bmp x=imread (? lens gray, bmp');

f i gure, imshow(x);

处理水印图像,将具调整为与载体图像相同人小

y=imreadC line, bmp');

figure, imshow(y);

yl=rgb2gray(y);

y2=im2bw(yl)

figure, imshow(y2);

把图像y2放人8倍

y3=imresize (yl, 8,' nearest,);

figure, imshow(y3);

整体位平面嵌入

zl二bitset (x, 1, y3) ;%替换最不重要位

z2二bitset (x, & y3) ;%替换最重要位

figure, imshow(zl);

figure, imshow(z2);

下图显示的为替换最不重要位和授重要位的结果

提取信息

tl=bitget (zl, 1);

figure, imshow(logical(tl));

t2=bitget (z2, 8);

figure, imshow(logical(t2));

2、完成随即选择嵌入位尽心LSB信息隐藏及提取

%将载体图像和水印图像转换为一维

xrs二reshape(x, 1, 512*512);

% figure, plot (xrs);

y2rs=reshape(y2, 1,64*64);

% figure, plot (ylrs);

%产生随机序列控制信息嵌入位,并嵌入水印

randC state,, 0): %生成随机数种子

r=rand(l, 64*64);

% figure, plot (r);

i=l;

for j=l:4096

if r(j)>0.5

i二i+64; xrs(i)=y2rs(j);

else

i二i+54; xrs(i)=y2rs(j);

end

end

%—维数组还原为二维图像 x2=rcshape(xrs, 512,512);

figure, imshow(x2);

%提取图像

randf state*, 0) ; %生成相同的随机数种子 r=rand(l,64*64);

i二 1;

for j=l:4096 if r(j)>0.5

i二i+64;

y2rs(j)= xrs(i);

else

i=i+54; y2rs(j)=xrs(i);

end

end

yy=reshape(y2rs, 64, 64); figure, imshow(yy);

D2MNPSNR(M) = l(Hogw%3、分别计算PSNR,分析信息隐藏图像质量

D2MN

PSNR(M) = l(Hogw

A/ N

££(7(x,y)-/w(x,y))2 尸 I

[row, col]二size(x);

sum1=0;

for i=l:row

for j=l:col

suml=suml+(zl (i, j)-x(i, j))*(zl (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值