自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3300)
  • 资源 (21)
  • 收藏
  • 关注

原创 源码获取 | matlab各类仿真代码获取方式

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。部分博客matlab代码已上传CSDN资源,点击博主博客主页->资源->搜索,订阅专栏领取各个专栏大礼包,适合新手和进阶者学习。更多Matlab仿真内容点击👇。🍊个人信条:格物致知。

2023-03-03 07:42:33 1142

原创 智能优化与机器学习结合算法实现时序数据预测matlab代码清单

涵盖卷积神经网络(CNN)、长短期记忆网络(LSTM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP神经网络、RBF神经网络、宽度学习等多种神经网络及智能算法优化神经网络matlab源码

2022-11-03 04:24:33 482

原创 智能优化与机器学习结合算法实现数据分类matlab代码清单

涵盖卷积神经网络(CNN)、长短期记忆网络(LSTM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP神经网络、RBF神经网络等多种神经网络及智能算法优化神经网络matlab源码

2022-11-03 04:21:13 522

原创 智能优化与机器学习结合算法实现数据预测matlab代码清单

涵盖卷积神经网络(CNN)、长短期记忆网络(LSTM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP神经网络、RBF神经网络等多种神经网络及智能算法优化神经网络matlab源码

2022-11-03 04:18:24 662

原创 【ELMAN分类】基于递归神经网络ELMAN实现数据分类

在机器学习和人工智能领域,数据分类是一个非常重要的任务。通过对数据进行分类,我们可以从中提取出有用的信息,并用于各种应用,如自动驾驶、语音识别和情感分析等。在这篇博文中,我们将介绍一种基于递归神经网络(Recurrent Neural Network,RNN)中的ELMAN模型来实现数据分类的方法。ELMAN模型是一种经典的RNN模型,它在处理序列数据时表现出色。与传统的前馈神经网络不同,ELMAN模型引入了一个称为“隐藏层状态”的概念,用于存储先前时间步的信息。

2023-10-02 10:28:57 14

原创 【KELM分类】基于灰狼算法优化核极限学习机GWO-KELM实现数据分类附matlab代码

随着机器学习和数据科学的快速发展,数据分类成为了许多实际应用中的重要任务之一。在处理大规模数据集时,传统的分类算法往往面临着计算复杂度高、泛化能力差等问题。因此,研究人员一直在寻找更加高效和准确的分类方法。在这篇博文中,我们将介绍一种基于灰狼算法优化核极限学习机(GWO-KELM)的数据分类方法。灰狼算法是一种基于自然界灰狼群体行为的优化算法,其模拟了灰狼的领导者和追随者之间的社会行为。而核极限学习机(KELM)是一种基于极限学习机(ELM)的改进算法,通过引入核函数来提高分类性能。

2023-10-02 09:16:25 11

原创 【BP分类】基于灰狼优化算法GWO优化BP神经网络的数据分类预测附matlab代码

随着大数据时代的到来,数据分类预测在各个领域中变得越来越重要。BP神经网络是一种常用的分类预测方法,但是由于其收敛速度慢和易陷入局部最优等问题,其性能有限。为了解决这些问题,研究人员提出了基于灰狼优化算法(GWO)优化BP神经网络的方法,以提高其分类预测性能。灰狼优化算法是一种基于自然界灰狼捕食行为的优化算法,通过模拟灰狼个体之间的捕食和社会行为,来寻找最优解。与传统的优化算法相比,灰狼优化算法具有收敛速度快、全局搜索能力强等优点。

2023-10-02 09:11:32 10

原创 【BP分类】matlab代码 基于果蝇优化算法FOA优化BP神经网络的数据分类预测

在当今信息时代,数据的分类和预测已经成为了各个领域中的重要任务。为了更好地解决这一问题,研究人员们不断提出了各种各样的算法和技术。其中,基于果蝇优化算法FOA优化BP神经网络的方法在数据分类预测领域中显示出了巨大的潜力和优势。果蝇优化算法是一种基于自然界中果蝇觅食行为的启发式优化算法。它模拟了果蝇在寻找食物时的行为,通过不断地搜索和学习来寻找最优解。与其他优化算法相比,果蝇优化算法具有较好的全局搜索能力和快速收敛性。因此,将果蝇优化算法应用于BP神经网络的优化过程中,可以有效地提高其分类和预测性能。

2023-10-02 09:06:35 8

原创 matlab 基于金枪鱼优化算法TSO优化BP神经网络的数据分类预测

在机器学习和数据科学领域,数据分类预测是一项重要的任务。它可以帮助我们理解和分析数据,并为未来的决策提供有价值的见解。BP神经网络是一种常用的分类预测算法,但其性能受到许多因素的影响,如网络结构、初始化权重和学习率等。为了提高BP神经网络的分类预测准确性,研究人员一直在寻找新的优化算法。近年来,金枪鱼优化算法(TSO)逐渐受到了研究人员的关注。这个算法是受到金枪鱼的迁徙行为启发而开发的。金枪鱼在大洋中迁徙时,会根据海洋温度和营养物质的分布来寻找最佳的迁徙路径。

2023-10-02 09:02:12 5

原创 基于黏菌优化算法SMA优化BP神经网络的数据分类预测

在现代社会中,数据分类预测成为了解决各种实际问题的重要手段之一。BP神经网络作为一种经典的人工神经网络模型,被广泛应用于数据分类预测任务中。然而,BP神经网络在训练过程中容易陷入局部最优解,导致分类预测性能下降。为了解决这个问题,研究人员提出了许多优化算法来改进BP神经网络的性能。本文将介绍一种基于黏菌优化算法SMA(Slime Mould Algorithm)优化BP神经网络的方法,以提高数据分类预测的准确性和稳定性。黏菌优化算法是一种模拟黏菌在寻找食物过程中的行为规律的启发式优化算法。

2023-10-02 08:57:43 66

原创 粒子群优化算法优化BP神经网络的数据分类预测

随着大数据时代的到来,数据分类预测在各个领域中扮演着越来越重要的角色。BP神经网络是一种常用的分类预测算法,但其在训练过程中容易陷入局部最优解的问题。为了提高BP神经网络的性能,研究者们提出了许多优化算法,其中粒子群优化算法是一种被广泛应用的方法。粒子群优化算法是一种模拟鸟群觅食行为的智能优化算法。它通过模拟鸟群中个体之间的信息交流和合作行为,以寻找最优解。在应用于BP神经网络的数据分类预测中,粒子群优化算法可以用来优化BP神经网络的权重和阈值,从而提高其分类准确率。

2023-10-02 08:54:53 2

原创 【XGBoost回归预测】基于向量加权平均算法INFO优化XGBoost实现数据回归预测附matlab代码

在机器学习领域,回归预测是一种重要的任务,它可以用来预测连续型的输出变量。XGBoost是一种强大的机器学习算法,它在回归预测任务中表现出色。本文将介绍如何使用向量加权平均算法INFO来优化XGBoost,以实现更准确的数据回归预测。XGBoost是一种基于梯度提升树的算法,它通过迭代地训练多个弱学习器,并将它们组合成一个强学习器。它在许多机器学习竞赛中取得了优异的成绩,并成为了业界常用的算法之一。然而,XGBoost在处理大规模数据集时可能会遇到一些挑战,例如训练时间长、内存占用高等问题。

2023-10-01 23:33:49 8

原创 【XGBoost回归预测】基于粒子群算法POS优化XGBoost实现数据回归预测附matlab代码

在机器学习领域,数据回归预测是一项重要的任务,它可以帮助我们根据已有的数据来预测未来的结果。而XGBoost是一种强大的机器学习算法,它在回归预测任务中表现出色。本文将介绍如何使用粒子群算法(Particle Swarm Optimization,PSO)来优化XGBoost模型,以实现更准确的数据回归预测。XGBoost是一种基于梯度提升树(Gradient Boosting Tree)的算法,它通过迭代地训练多个弱分类器来构建一个强分类器。

2023-10-01 23:27:59 11

原创 【XGBoost回归预测】基于鲸鱼算法WOA优化XGBoost实现数据回归预测附matlab代码

在机器学习领域,回归预测是一项重要的任务。回归预测的目标是根据给定的输入变量,预测出一个或多个连续的输出变量。XGBoost是一种强大的机器学习算法,被广泛应用于回归和分类任务中。本文将介绍如何使用鲸鱼算法WOA(Whale Optimization Algorithm)来优化XGBoost算法,实现更准确的数据回归预测。XGBoost是一种基于梯度提升树的机器学习算法,它通过迭代地训练多个弱分类器,并将它们组合成一个强分类器。XGBoost具有很强的泛化能力和鲁棒性,能够处理高维数据和大规模数据集。

2023-10-01 23:20:38 10

原创 【lssvm分类】基于秃鹰算法优化最小二乘支持向量机BES-LSSVM实现数据分类附matlab代码

在机器学习领域,支持向量机(Support Vector Machines,SVM)是一种常用的分类算法。它通过在特征空间中构建一个最优超平面来实现数据分类。然而,传统的SVM算法在处理大规模数据集时存在一些问题,比如计算复杂度较高、内存消耗大等。为了解决这些问题,研究者们提出了一种基于最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)的改进算法,即BES-LSSVM。

2023-10-01 23:14:20 10

原创 【lssvm回归预测】基于蛇群算法优化最小二乘支持向量机SO-lssvm实现数据回归预测附matlab代码

在机器学习领域,支持向量机(Support Vector Machine,SVM)是一种常用的监督学习方法,被广泛应用于分类和回归问题。然而,传统的SVM模型在处理回归问题时存在一些局限性,例如对噪声敏感、模型复杂度难以确定等。为了克服这些问题,研究者们提出了基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的回归模型。LSSVM回归模型通过最小化目标函数来寻找最佳的超平面,从而实现对数据的回归预测。

2023-10-01 23:08:37 5

原创 matlab 基于黏菌算法优化最小二乘支持向量机SMA-lssvm实现数据回归预测

在机器学习领域,数据回归预测是一个重要的任务,它可以帮助我们从已知数据中推断出未知数据的值。最小二乘支持向量机(Least Squares Support Vector Machine,简称LSSVM)是一种常用的回归预测模型,它通过最小化误差平方和来拟合数据。然而,LSSVM模型在处理大规模数据集时可能会面临一些挑战。为了解决这个问题,我们可以引入黏菌算法(Slime Mould Algorithm,简称SMA)来优化LSSVM模型,以提高其性能和准确性。

2023-10-01 23:01:56 9

原创 【SVM分类】基于北方苍鹰优化卷积神经网络结合支持向量机NGO-CNN-SVM的数据分类附matlab代码

在当今数字化时代,数据分类一直是计算机科学领域中的一个重要问题。随着大数据和机器学习的兴起,研究人员一直在寻找更有效的方法来处理和分类数据。在这篇博文中,我们将介绍一种新的数据分类方法,即基于北方苍鹰优化卷积神经网络结合支持向量机(NGO-CNN-SVM)的方法。卷积神经网络(CNN)是一种经过广泛应用的深度学习模型,它在图像分类和模式识别等领域取得了巨大成功。然而,对于一些复杂的数据分类问题,单独使用CNN可能无法达到理想的效果。为了提高分类准确性,我们引入了支持向量机(SVM)作为CNN的后处理方法。

2023-10-01 22:56:32 4

原创 【lssvm回归预测】基于龙格库塔算法优化最小二乘支持向量机RUN-lssvm实现数据回归预测附matlab代码

在机器学习领域中,支持向量机(Support Vector Machine,SVM)是一种常用的监督学习方法,它在分类和回归问题中都取得了很好的效果。然而,传统的SVM算法在处理大规模数据时会面临一些挑战,例如计算复杂度高、内存消耗大等问题。为了解决这些问题,研究人员提出了一种基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的回归预测方法。LSSVM回归预测方法通过将回归问题转化为一个最小化目标函数的优化问题,通过求解这个优化问题得到回归模型。

2023-09-29 16:42:08 14

原创 【GRNN分类】基于adaboost结合广义神经网络GRNN实现数据分类附Matlab源码

在机器学习领域,数据分类是一个重要的任务,其目的是根据已有的数据样本,将未知的数据样本分配到不同的类别中。为了解决这个问题,许多分类算法被提出和应用。其中一种被广泛研究和使用的算法是广义神经网络(Generalized Regression Neural Network,GRNN)。本文将介绍如何通过结合adaboost算法和GRNN来实现数据分类。首先,让我们了解一下adaboost算法。adaboost是一种集成学习算法,其主要思想是通过逐步训练多个弱分类器,并将它们组合成一个强分类器。

2023-09-28 16:38:47 17

原创 【ELM分类】基于Adaboost结合极限学习机实现实现数据分类附matlab代码

在机器学习领域中,分类预测是一个非常重要的任务。它涉及将输入数据分为不同的类别,以便对未知数据进行分类。在这个领域中,有许多不同的算法可以用于分类预测,其中包括ELM-Adaboost算法。ELM-Adaboost算法是一种结合了极限学习机(ELM)和Adaboost算法的分类预测方法。极限学习机是一种单层前馈神经网络,其训练速度非常快,同时具有较好的泛化性能。而Adaboost算法是一种集成学习方法,通过组合多个弱分类器来构建一个更强大的分类器。

2023-09-28 16:16:36 21

原创 基于Matlab模拟无线网络拓扑、估计链路质量并可视化拓扑

在物流和运输领域,车辆路径规划是一个重要的问题。在实际应用中,我们常常需要考虑到车辆的容量限制以及时间窗口约束。这样的问题在实际中非常具有挑战性,因为我们需要在满足这些约束的前提下,找到一种最优的路径规划方案。本文将介绍如何使用粒子群算法来解决这个问题,并引入惩罚成本的概念来进一步优化解决方案。粒子群算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等动物群体的行为。在粒子群算法中,问题的解决方案被表示为一个粒子,而粒子群则由多个粒子组成。

2023-09-28 14:55:47 17

原创 基于粒子群算法求解带时间窗的+带容量的车辆路径规划问题(惩罚成本)附Matlab代码

在物流和运输领域,车辆路径规划是一个重要的问题。在实际应用中,我们常常需要考虑到车辆的容量限制以及时间窗口约束。这样的问题在实际中非常具有挑战性,因为我们需要在满足这些约束的前提下,找到一种最优的路径规划方案。本文将介绍如何使用粒子群算法来解决这个问题,并引入惩罚成本的概念来进一步优化解决方案。粒子群算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等动物群体的行为。在粒子群算法中,问题的解决方案被表示为一个粒子,而粒子群则由多个粒子组成。

2023-09-28 14:54:02 11

原创 【地震】基于有限差分 (FDTD) 模拟地震超材料(晶体)时域分析附matlab代码

地震是一种自然灾害,对人类和建筑物造成巨大的破坏。为了减轻地震对建筑物的影响,科学家和工程师们一直在寻找新的方法和技术。在过去的几十年里,超材料(metamaterials)作为一种新兴的材料,引起了广泛的关注。超材料具有特殊的物理性质,可以用来控制和操纵电磁波、声波和其他波动现象。近年来,研究人员开始探索使用超材料来减轻地震对建筑物的影响。在这篇博文中,我们将介绍如何使用有限差分时域(FDTD)方法来模拟地震超材料的行为。FDTD是一种数值计算方法,用于求解波动方程。

2023-09-28 14:49:57 8

原创 【XGBoost回归预测】基于麻雀算法SSA优化XGBoost实现数据回归预测附matlab代码

在当今大数据时代,数据回归预测在各个领域中扮演着重要的角色。为了提高预测模型的准确性和效率,研究人员一直在寻找新的优化算法和技术。本文将介绍一种基于麻雀算法SSA优化XGBoost的方法,用于数据回归预测。XGBoost是一种基于梯度提升决策树的机器学习算法,以其高效的性能和准确的预测而闻名。然而,XGBoost的性能仍然可以通过进一步优化来提高。为了解决这个问题,我们引入了麻雀算法SSA(Sparrow Search Algorithm)。麻雀算法SSA是一种基于鸟类觅食行为的优化算法。

2023-09-28 14:42:20 11

原创 单播和多播的反应路由协议需求距离向量(AODV)matlab实现

​最初的反应协议并不是为在发现路线时具有高度移动性的特点而设计的。由于动态的修改,这一变化往往是由于故障导致过度广播和淹没整个网络,以便发现新的路线。另外,路由的初始需要一些时间,这种延迟可以很容易地改变一切。由于这些原因,典型的反应性协议以其目前的格式,不完全适合于合作避免碰撞等关键时间应用。合作避免碰撞是车上安全应用的一个重要类别,其目的是向使用车辆对车辆(V2V)通信的司机提供早期的警告。需求距离向量(AODV)是一种能够同时进行单播和多播的反应路由协议。

2023-09-28 14:37:19 8

原创 基于同步压缩的多变量数据时频分析附 matlab代码

在当今数据驱动的世界中,数据分析和数据挖掘已成为各行各业的重要组成部分。在许多领域中,从大规模数据集中提取有用信息的能力对于做出准确的决策至关重要。然而,随着数据量的不断增加和多变量数据的广泛应用,传统的数据分析方法已经无法满足对数据进行全面分析的需求。多变量数据时频分析是一种用于分析多个变量之间的时域和频域关系的方法。它可以帮助我们了解不同变量之间的相互作用和依赖关系,并揭示出数据中隐藏的模式和趋势。然而,由于多变量数据的复杂性和高维度,传统的数据分析方法在处理这些数据时面临着许多挑战。

2023-09-28 14:29:23 5

原创 【特征提取】语音信号端点检测+倒谱法+自相关法特征提取附Matlab源码

特征提取是语音信号处理中的关键步骤,它能够从语音信号中提取出有用的信息,为后续的语音识别、语音合成等任务提供基础。在本文中,我们将介绍两种常用的特征提取方法:语音信号端点检测和倒谱法、自相关法。语音信号端点检测是指确定语音信号开始和结束的时间点。在语音信号中,通常存在着非语音部分,如静音或噪声。通过端点检测,我们可以将非语音部分剔除,只保留语音部分,从而提高后续处理的准确性和效率。常用的端点检测算法有基于短时能量和过零率的方法,以及基于语音活动检测的方法。

2023-09-28 14:25:16 6

原创 【光学】基于matlab模拟参考光栅和变形光栅折叠相位

在光学领域,光栅是一种非常重要的元件,它被广泛应用于光学仪器和光学通信系统中。光栅的作用是将入射光分散成不同的波长,并产生干涉效应。这种干涉效应可以用来测量光的波长、角度和相位等参数。光栅的种类繁多,其中包括考光栅和变形光栅。本文将重点介绍这两种光栅的特性和应用。首先,我们来了解考光栅。考光栅是一种周期性的光栅结构,其中包含许多平行的凹槽或凸起。当入射光照射到考光栅上时,光将被分散成不同的波长,并在不同的角度上产生干涉。这种干涉效应可以通过调整光栅的周期和凹槽或凸起的形状来控制。

2023-09-28 14:20:56 6

原创 【XGBoost回归预测】基于XGBoost实现数据回归预测附matlab代码

在数据科学和机器学习领域,回归预测是一项关键任务。它可以帮助我们预测连续变量的值,从而为决策提供有力的支持。在本篇博文中,我们将介绍基于XGBoost算法实现数据回归预测的方法。XGBoost是一种强大的机器学习算法,它在许多数据科学竞赛中表现出色。它是一种梯度提升算法,通过迭代地训练多个决策树模型来逐步提升预测性能。与传统的决策树算法相比,XGBoost具有更好的泛化能力和准确性。首先,我们需要准备我们的数据集。数据集应该包含一些特征(自变量)和一个目标变量(因变量)。

2023-09-28 14:17:15 7

原创 基于鲸鱼算法优化ElM神经网络实现数据分类附matlab代码

在当今信息时代,数据分类是一项重要的任务,对于许多领域的研究和应用都具有关键性的作用。为了实现高效准确的数据分类,许多机器学习算法被提出和应用。其中,鲸鱼算法和极限学习机(ElM)神经网络是两个备受关注的技术。本文将介绍鲸鱼算法优化ElM神经网络在数据分类中的应用。鲸鱼算法是一种启发式优化算法,灵感来源于鲸鱼的觅食行为。鲸鱼通过个体行为和社会行为的相互作用,在复杂环境中寻找最佳的食物来源。这种行为启发了鲸鱼算法的设计,使其能够在搜索空间中高效地寻找全局最优解。

2023-09-27 10:57:22 16

原创 Matlab 天鹰算法优化长短时记忆AO-LSTM风电数据预测(含前后对比)

在如今的科技时代,风能作为可再生能源的一种,正逐渐成为世界各地能源供应的重要组成部分。随着风电场的不断发展和扩大,对风电发电量的准确预测变得尤为重要。准确的风电预测可以帮助电力公司优化能源调度,提高能源利用效率,并减少对传统能源的依赖。长短时记忆(LSTM)是一种特殊的循环神经网络(RNN),在时间序列数据预测中表现出色。然而,传统的LSTM模型在处理长期依赖性时存在一定的局限性。为了解决这个问题,研究人员提出了AO-LSTM(Attention-based Optimization LSTM)模型。

2023-09-27 10:36:09 14

原创 matlab 基于粒子群算法优化长短记忆神经网络PSO-LSTM实现台风风电功率多输入单输出预测

在过去的几十年中,风能作为一种可再生能源得到了广泛的关注和应用。随着风电场的不断增多,对于风电功率的准确预测变得越来越重要。台风是一种常见的天气现象,其强风和降雨对风电场的运行产生了直接影响。因此,准确预测台风期间的风电功率对于风电场的运营和管理至关重要。长短记忆神经网络(LSTM)是一种常用的深度学习模型,已被广泛应用于时间序列预测问题。然而,传统的LSTM模型在处理复杂的多变量输入时存在一些限制。

2023-09-27 10:21:25 19

原创 【LSTM回归预测】基于ICEEMDAN结合改进海洋捕食算法优化双向长短记忆神经网络实现iMPA-BiLSTM功率/风速预测附matlab代码

随着科技的不断发展和应用需求的增加,对于能源预测的准确性和可靠性提出了更高的要求。在能源领域中,功率和风速的预测是非常重要的,因为它们直接影响到风力发电和能源供给的稳定性。因此,如何提高功率和风速预测的准确性成为了研究的热点。近年来,深度学习方法在功率和风速预测领域取得了显著的成果。其中,长短记忆神经网络(LSTM)被广泛应用于时间序列预测任务中,其能够捕捉到时间序列中的长期依赖关系。然而,传统的LSTM模型在处理非线性、非平稳和非高斯的时间序列数据时存在一定的局限性。

2023-09-27 10:10:11 25

原创 基于自适应变螺旋最近领域扰动的鲸鱼优化算法求解单目标优化问题(GWOA)附matlab代码

近年来,优化算法在解决各种单目标优化问题中发挥着重要作用。其中,鲸鱼优化算法 (GWO) 是一种受到自然界鲸鱼群体行为启发的优化算法,已经在多个领域取得了显著的成果。然而,传统的GWO算法在处理复杂问题时存在一些局限性。为了克服这些限制,研究者们提出了一种基于自适应变螺旋最近领域扰动的鲸鱼优化算法 (GWOA)。GWOA算法的核心思想是通过引入自适应变螺旋最近领域扰动机制,增加搜索空间的多样性和局部搜索能力。该算法的基本步骤如下:初始化种群:随机生成一定数量的鲸鱼个体,并为每个个体分配初始位置和速度。

2023-09-27 09:59:14 3

原创 Lasso分位数时间序列区间预测 Matlab代码

在时间序列分析中,预测未来的数值是一项重要的任务。然而,单纯的点预测可能无法提供足够的信息,尤其是在面临不确定性的情况下。为了更好地量化预测的不确定性,我们可以使用分位数预测方法。分位数预测方法可以为我们提供一个区间,该区间包含未来观测值的可能范围。这种方法不仅可以提供点预测,还可以提供预测的上下界。在这篇博文中,我们将介绍如何使用Matlab中的Lasso分位数方法进行时间序列区间预测。Lasso分位数回归是一种基于Lasso回归的方法,用于估计时间序列的条件分布。

2023-09-27 09:45:39 7

原创 Matlab Bootstrap区间预测

在统计学中,区间预测是一种常用的方法,用于估计未来观测值的范围。它可以帮助我们更好地理解数据的不确定性,并为决策者提供更可靠的信息。Bootstrap方法是一种常见的区间预测技术,它通过模拟重抽样来估计观测值的分布。本文将介绍Bootstrap方法的原理和应用,并探讨其优缺点。Bootstrap方法的原理很简单,它通过从原始数据集中有放回地抽取样本,构建多个新的数据集。然后,对每个新数据集进行统计分析,并记录感兴趣的统计量,如均值、中位数或回归系数。通过重复这个过程,我们可以得到一系列统计量的分布。

2023-09-27 09:41:25 5

原创 基于凸性自适应控制和和折射反向学习机制的秃鹰算法求解单目标优化问题附matlab代码

在计算机科学和工程领域,优化问题是一类常见且重要的问题。优化问题的目标是寻找最优解,使得某个目标函数的值最小或最大化。为了解决这些问题,研究者们提出了许多不同的算法和方法。在本篇博客中,我们将介绍一种基于凸性自适应控制和折射反向学习机制的秃鹰算法,用于求解单目标优化问题。这种算法结合了凸性自适应控制和折射反向学习机制的优点,能够有效地找到全局最优解。首先,让我们来了解一下凸性自适应控制。凸性是一个数学概念,用于描述函数的曲率和凹凸性质。

2023-09-27 00:30:11 13

原创 基于多元宇宙算法优化核极限学习MVO-KELM实现风电回归预测附matlab代码

随着全球对可再生能源的需求不断增长,风能作为一种清洁、可再生的能源形式,受到了广泛关注。风能的可预测性对于电力系统的稳定运行至关重要。因此,准确预测风电发电量对于电力行业的规划和运营至关重要。在过去的几十年中,许多传统的预测方法已经被提出和应用于风电预测中,如回归分析、时间序列分析和人工神经网络等。然而,这些方法往往受到数据特性和模型复杂性的限制,导致预测精度不高。近年来,基于多元宇宙算法的优化方法在解决复杂问题和优化模型方面取得了显著的成果。多元宇宙算法是一种模拟自然界中多元宇宙的进化过程的优化算法。

2023-09-27 00:02:14 3

原创 基于正交对立学习的改进麻雀搜索算法( OOLSSA)附matlab代码

在现代科技的快速发展中,人工智能领域的研究成果不断涌现,为解决各种实际问题提供了强有力的工具。麻雀搜索算法是一种基于麻雀群体行为的启发式优化算法,它模拟了麻雀在觅食过程中的行为特点。然而,传统的麻雀搜索算法存在一些不足之处,如易陷入局部最优解、搜索效率低等问题。为了克服这些问题,本文提出了一种基于正交对立学习的改进麻雀搜索算法(OOLSSA)。正交对立学习是一种新兴的优化算法,通过引入正交对立学习因子,可以有效提升搜索算法的性能。

2023-09-26 23:50:19 3

微播易&消费界:2021中国新消费品牌社媒营销研究报告.pdf

微播易&消费界:2021中国新消费品牌社媒营销研究报告

2023-09-01

淘宝:淘宝直播2021年度报告.pdf

淘宝:淘宝直播2021年度报告

2023-09-01

苏宁金融:宠物经济发展趋势研究报告.pdf

苏宁金融:宠物经济发展趋势研究报告

2023-09-01

世界银行:2021 年世界发展报告:让数据创造更好生活.pdf

世界银行:2021 年世界发展报告:让数据创造更好生活

2023-09-01

千瓜数据:2020年小红书母婴行业品牌投放数据报告.pdf

千瓜数据:2020年小红书母婴行业品牌投放数据报告

2023-09-01

青山资本:2020中国消费品线上市场研究报告.pdf

青山资本:2020中国消费品线上市场研究报告

2023-09-01

普华永道:坐拥万亿消费的本土市场,中国零食企业为何纷纷走出去?.pdf

普华永道:坐拥万亿消费的本土市场,中国零食企业为何纷纷走出去?

2023-09-01

普华永道:中国税收“十三五”回顾与“十四五”展望.pdf

普华永道:中国税收“十三五”回顾与“十四五”展望

2023-09-01

普华永道:中国生物安全法及其对企业的影响.pdf

普华永道:中国生物安全法及其对企业的影响

2023-09-01

普华永道:直销或代理:汽车销售的未来之路.pdf

普华永道:直销或代理:汽车销售的未来之路

2023-09-01

普华永道:直播电商的兴起.pdf

普华永道:直播电商的兴起

2023-09-01

普华永道:引领先机,展翅翱翔 - 航空业务服务.pdf

普华永道:引领先机,展翅翱翔 - 航空业务服务

2023-09-01

普华永道:私募股权责任投资.pdf

普华永道:私募股权责任投资

2023-09-01

普华永道:氢能源行业前景分析与洞察.pdf

普华永道:氢能源行业前景分析与洞察

2023-09-01

普华永道:流量启航,基建赋能,通信行业在5G时代加速前行.pdf

普华永道:流量启航,基建赋能,通信行业在5G时代加速前行

2023-09-01

普华永道:跨境理财通试点在即,湾区银行蓄势待发.pdf

普华永道:跨境理财通试点在即,湾区银行蓄势待发

2023-09-01

普华永道:工业制造业热门话题 - 如何保护运营技术免受网络攻击.pdf

普华永道:工业制造业热门话题 - 如何保护运营技术免受网络攻击

2023-09-01

普华永道:第24期全球CEO调研中国报告.pdf

普华永道:第24期全球CEO调研中国报告

2023-09-01

普华永道:风险应对有道,驱动后量子时代的数据保护.pdf

普华永道:风险应对有道,驱动后量子时代的数据保护

2023-09-01

普华永道:The GCC post-pandemic:Massive and fast transformation.pdf

普华永道:The GCC post-pandemic:Massive and fast transformation

2023-09-01

1992年A题优秀论文① 关于施肥效果分析问题的评注.pdf

1992年A题优秀论文① 关于施肥效果分析问题的评注.pdf

2023-10-02

【智能优化算法-带电粒子优化算法】基于带电粒子优化算法ECPO求解单目标优化问题附matlab代码 标准.zip

【智能优化算法-带电粒子优化算法】基于带电粒子优化算法ECPO求解单目标优化问题附matlab代码 标准.zip

2023-09-06

【智能优化算法】鸟群优化算法BSA附Python代码.zip

【智能优化算法】鸟群优化算法BSA附Python代码.zip

2023-09-06

【BP回归预测】基于Nesterov动量融入误差反向传播算法(BP)的神经网络数据预测附Python代码和数据集.zip

【BP回归预测】基于Nesterov动量融入误差反向传播算法(BP)的神经网络数据预测附Python代码和数据集.zip

2023-09-06

【智能优化算法】灰狼优化算法GWO附Python代码.zip

【智能优化算法】灰狼优化算法GWO附Python代码.zip

2023-09-06

以均方根反向传播算法(RMSProp)作为反向传播算法的三层神经网络实现数据预测附Python源码+数据集.zip

【BP回归预测】以均方根反向传播算法(RMSProp)作为反向传播算法的三层神经网络实现数据预测附Python源码+数据集.zip

2023-09-06

以自适应学习率调整算法(Adadelta)作为反向传播算法的三层神经网络实现数据预测附Python源码+数据集.zip

【BP回归预测】以自适应学习率调整算法(Adadelta)作为反向传播算法的三层神经网络实现数据预测附Python源码+数据集.zip

2023-09-06

132.MATLAB编程 信号处理 频谱分析加汉宁窗函数 源代码.zip

132.MATLAB编程 信号处理 频谱分析加汉宁窗函数 源代码.zip

2023-09-01

2008美国大学生数学建模特等奖论文集(含赛题).rar

2008美国大学生数学建模特等奖论文集(含赛题).rar

2023-09-01

2007美国大学生数学建模特等奖论文集(含赛题).rar

2007美国大学生数学建模特等奖论文集(含赛题).rar

2023-09-01

2006美国大学生数学建模特等奖论文集.txt

2006美国大学生数学建模特等奖论文集.txt

2023-09-01

131.MATLAB编程 小波异常值提取代码.zip

131.MATLAB编程 小波异常值提取代码.zip

2023-09-01

一面:2020天猫国货食品趋势洞察报告.pdf

一面:2020天猫国货食品趋势洞察报告

2023-09-01

唯恒农业:2021年中国猪牛羊禽数据分析报告.pdf

唯恒农业:2021年中国猪牛羊禽数据分析报告

2023-09-01

新榜:2021上半年小红书营销洞察报告.pdf

新榜:2021上半年小红书营销洞察报告

2023-09-01

微波易:国货护肤品牌社媒营销解决方案.pdf

微波易:国货护肤品牌社媒营销解决方案

2023-09-01

腾讯:腾讯健康食饮行业洞察白皮书 2021 版.pdf

腾讯:腾讯健康食饮行业洞察白皮书 2021 版

2023-09-01

网经社:2021年(上)在线教育消费投诉数据与典型案例报告.pdf

网经社:2021年(上)在线教育消费投诉数据与典型案例报告

2023-09-01

淘榜单:2021卷里求生:直播时代新健康消费洞察.pdf

淘榜单:2021卷里求生:直播时代新健康消费洞察

2023-09-01

苏宁金融:颜值经济研究报告.pdf

苏宁金融:颜值经济研究报告

2023-09-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除