使用hht变换_HHT方法探讨—2

本文深入探讨HHT变换,重点解析本征模态函数(IMF)的概念和经验模态分解(EMD)方法。EMD是一种自适应的信号分解技术,通过迭代找到满足IMF条件的子信号。希尔伯特变换随后用于获取IMF的瞬时幅值和频率。文章还讨论了HHT与傅里叶分析的差异,并指出HHT在处理非平稳信号时的优势。
摘要由CSDN通过智能技术生成

9f94f4c3d00f4ee4a19ea51a587fea55.png
为便于理解HHT主要思想,本文尽量不用公式进行阐述(其实就是懒……)

相关概念

  • 本征模态函数

本征模态函数(Intrinsic Mode Function, IMF)是HHT理论中的核心概念,IMF需满足:

  1. 函数在整个时间范围内,局部极值点和过零点的数目必须相等,或最多相差一个;
  2. 在任意时刻点,局部最大值的包络(上包络)和局部最小值的包络(下包络) 均值为零。

需要说明的是,IMF需满足以上两个条件,是出于频率唯一性的要求,即保证IMF所代表的信号瞬时频率是有实际物理意义的。这里的瞬时频率指信号瞬时相位对时间求导所得结果。

  • 经验模态分解

经验模态分解(Empirical Mode Decomposition, EMD)是HHT理论中的核心方法,即一种信号分解方法。在我看来,这里用“经验”一词主要是因为这种方法本身并没有严密的理论基础,即没有严密论证为什么应当用这种方式来对复杂信号进行分解进而得到一系列子信号(即IMF)。相较于传统的信号分解方法如傅里叶变换、短时傅里叶变换、小波变换等,一般认为这种方法具有“自适应”的特点。事实上,这种自适应性也是由EMD本身决定的,即其“经验性”的特点使得信号分解结果更多的依赖于信号本身的数值特征。至于这种“经验性”是否一定准确、符合物理实际,则是另外一回事了,后面有时间的话我会针对这一点进行详细的分析,毕业论文中的不少内容也是出于对这一块的思考。下面对EMD主要内容进行简要介绍:

  1. 分别对原信号极大值点、极小值点应用三次样条插值,得到信号上、下包络线;
  2. 求取信号上、下包络线均值;
  3. 原信号减去信号上、下包络线均值,得到子信号;
  4. 验证子信号是否为IMF:若是,则其为IMF1,用原信号减去IMF1,对所得新信号重复以上过程。若不是,则对该子信号重复以上过程,直到得到IMF1。

通过以上步骤,我们便实现了对(复合)信号的分解,得到一系列IMF以及可能存在的不满足IMF要求的余项。文章题图即是一个对信号应用经验模态分解(EMD)的例子,这里再把它贴在下面:

d931bcb3cf98ab17f930b1ba4da88ea6.png

由以上信号分解过程不难看出,EMD至少存在以下问题:

  1. 样条插值方法:使用三次样条插值,主要是因为它能较好的拟合多种类型的函数曲线,应用广泛,具有较好的普适性。有许多文献提出了不同的插值方法来对EMD进行改进,在我看来,其实只是针对他们各自研究的信号对象的分解过程进行了一定优化,并不具有一般性。事实上,用插值方法来对曲线进行拟合必然存在局限,这属于EMD的固有缺陷,但对大多数应用场景而言,这种插值方法所带来的问题并不是它们所关注的重点;
  2. 包络的物理意义:一般情况下,拟合是包络的一种近似,即包络本身指的是信号的幅值曲线,而我们通过对信号极值点进行插值得到拟合曲线,进而将其视为信号的幅值曲线,即包络。但在前述EMD过程的步骤2中,提到对信号函数极值点求取包络,此时包络的含义是不明确的,即我们不能简单的认为此时得到的包络是作为对信号幅值曲线的近似。简单来说,在EMD过程中,由信号极值点得到的包络本身并不具有明确的物理意义,这会影响它的严密性。当然,可以说它充分体现了“经验性”来结束这种讨论……;
  3. IMF的近似性:这里的“近似性”具有两种含义:一方面,在前述EMD过程的步骤4中,判断所得到的子信号是否满足IMF的要求时往往会受到插值拟合、信号分解过程等环节的影响,即很少有子信号能够严格满足IMF的要求,在实际应用中经常结合一些特殊方法(如分解次数限定、类柯西收敛准则等)来得到近似满足IMF要求的子信号,并将其视为IMF;另一方面,由前述对IMF需满足的两个条件可知,它们其实是对信号特征的一种近似的、粗略的限制,这一点主要由限制条件2所决定;
  4. 信号分解方法的完备性:简单地,可以将这里所说的“完备性”理解为:对信号应用EMD得到IMF1,IMF2,IMF3等一系列子信号之后,这些子信号之和在数值上是否与信号函数相等。在我看来,这个问题虽然客观存在,但对EMD来说过于苛求了,因为它本身就是经验性的,完备性一般都是不满足的。在实际应用中,若我们知道组成信号的子信号数量或者期望得到特定数量的子信号,那么我们可以使用原信号减去这些IMF所得的结果作为余项,从而解决这种完备性问题。
  • 希尔伯特变换

HHT是一种时频分析方法,在通过EMD获得组成(复合)信号的一系列IMF后,通过希尔伯特变换(Hilbert Transform, HT)方法来得到IMF的瞬时幅值与瞬时频率。对于信号函数

来说,其希尔伯特变换定义如下:

50756ea4c36260418ed32cb1c0f2ae74.png

简单来说,希尔伯特变换法构造了一个复数:其实部为信号函数,虚部为信号函数经希尔伯特变换所得结果。由该复数的模值、相位进而得到IMF瞬时幅值与瞬时频率。

从HT方法的基本思想可以看出,其获取IMF瞬时幅频结果的准确性主要依赖于HT本身,即希尔伯特变换是否能够将信号准确移相90度,希尔伯特变换环节的误差决定了应用HT方法得到IMF瞬时幅频结果的误差。Bedrosian定理和Nuttall定理对希尔伯特变换实现90度移相的准确性进行了一定的分析,给出了分析其误差的量化指标。

我个人对希尔伯特变换法的认识是,当IMF幅值包络不是直线(即幅值不恒定)时,希尔伯特变换法对信号瞬时频率的计算必然是存在一定误差的,这是因为此时信号调幅函数也参与了HT的卷积运算,影响了移相的准确性。


通过以上对本征模态函数(IMF)、经验模态分解(EMD)、希尔伯特变换(HT)的介绍与分析,HHT的基本内容就介绍的差不多了。

最后,将HHT与经典的傅里叶分析进行简单对比:

  1. 基底特征:HHT采用幅值、频率可时变的IMF;傅里叶分析采用幅值、频率均恒定的三角函数;
  2. 分解方法:HHT采用经验性的方法——EMD来对信号进行分解;傅里叶分析基于三角级数相关理论对信号进行分解;
  3. 应用范围:HHT可用于子信号具有非平稳特征的复合信号分解,得到子信号瞬时幅值、瞬时频率结果,而当子信号不具有非平稳特征时,HHT所得信号分解结果与实际存在一定误差,在有些情形下是失效的;傅里叶分析只适用于子信号不具有非平稳特征的复合信号分解,在这种情形下,傅里叶分析的结果是准确的。

由以上对比可以清晰看出,HHT的优势在于复合信号具有非平稳特征子信号的获取,而傅里叶分析并不适用于这种情形。其他传统时频分析方法中,有的作为对傅里叶分析在这种场景下不足的改进,如短时傅里叶变换(STFT);有的提出了新的具有非平稳特征的基底对信号进行分析,如小波变换(WT)。STFT存在高时间分辨率与高频率分辨率不可兼得的固有缺陷,WT存在普适性不足的问题。

根据以上讨论,可以提炼出以下问题:

  1. 如何从数学上定义一般性的、具有非平稳特征的基底函数?
  2. 如果获取这种具有非平稳特征基的瞬时幅值与瞬时频率?
  3. 基于这种基底的信号分解方法是怎样的?

我的毕业论文主要聚焦于问题1,2,并给出了自己的答案。要是有人感兴趣的话我再开个专栏介绍吧……应该没有吧哈哈哈。

突然感觉专栏像个树洞一样,装的都是寂寞……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值