
70.已知抛物线y1=-1/4(x+4)^2顶点为A,与y轴的相交于点B,抛物线y2=x^2+2mx+n的顶点P在抛物线y1上,与x轴相交于C,D两点,且xC<xD,与y轴相交于点E.
(1)当C,D两点都在线段OA上且OC=OE时,求证:AC=OD;
(2)若抛物线y2与线段AB没有交点,求m的取值范围.

思路:
(1)证明y2的对称轴为x=-2即可,即证明m=2;
(2)分两种情况,分别建立模型,求解。
解读:
抛物线y1的顶点A(-4,0),与y轴交点B(0,-4),则直线AB为y=-x-4;抛物线y2=x^2+2mx+n=(x+m)^2+n-m^2的顶点P(-m,n-m^2)在抛物线y1上,因而
n-m^2=-1/4(4-m)^2,
解得n=-1/4(4-m)^2+m^2=(3m^2+8m-16)/4=(m+4)(3m-4)/4
(1)线段OA:y=0,且0≤x≤-4,
抛物线y2的对称轴:直线x=-m(图中直线PQ),垂直平分线段CD是必然的,当点C,D在线段OA上时,对称轴PQ必然也垂直线段AB,能否平分AB,则要看m的取值是否为-2。
如图PQ⊥AB,垂足为Q(-m,0),则-4≤-m≤0,所以0≤m≤4,
抛物线y2开口向上,穿越x轴负半轴,则抛物线y2的顶点P必在第三象限,与y轴的交点E(0,n)必在y轴的正半轴,此时n>0,即此时OE=n,
当OC=OE=n时,点C(-n,0),因而当x=-n时,y2=0,
即n^2-2mn+n=0,因为此时n>0,所以n=2m-1,
又因为n=(3m^2+8m-16)/4
所以(3m^2+8m-16)/4=2m-1,解得m=2,m=-2,又0≤m≤4,所以m=2,
此时垂足Q(-2,0),所以Q为既为OA的中点,也是CD的中点,因而AC=OD.

(2)抛物线y2与线段AB没有交点,有两种情况:
情况1:抛物线y2与直线AB没有交点;
情况2:抛物线y2与直线AB有交点,但交点不在线段AB上。
情况1意味着方程x^2+(2m+1)x+n+4=0没有实数根,
即△=(2m+1)^2-4(n+4)= (2m+1)^2-(3m^2+8m-16)-16
=(m-2)^2-3<0,解得2-√3<m<2+√3
因而情况1时,2-√3<m<2+√3

情况2抛物线y2与直线AB有交点,但交点不在线段AB上。
抛物线y2与直线AB有交点,交点不在线段AB上,
意味着又有下面两种情况
情况21 (如图)
△≥0,且yE>-4

△=(m-2)^2-3≥0,
解得m≤2-√3或m≥2+√3
yE=n=(3m^2+8m-16)/4>-4
m(3m+8)>0
解得m<-8/3或m>0
综合得m<-8/3或m≥2+√3
情况22 (如图)
△≥0,且xP<-4

△=(m-2)^2-3≥0,
解得m≤2-√3或m≥2+√3
xP=-m<-4
即m>4
综合得m>4
当m=4时,抛物线y2顶点P与A重合,不符合题意,
因而情况2时,m<-8/3或m≥2+√3且m≠4
综合情况1,2得
m<-8/3或m≥2-√3且m≠4,
所以若抛物线y2与线段AB没有交点,则m<-8/3或m≥2-√3且m≠4.
综述:
根据交点情况,确定参数。
1.按常规方法,先求出交点横坐标(方程的解),再根据交点范围,列出不等式,求解即可。但列出的不等式往往是分式,二次根式复合体,非常复杂,求解不等式并不容易。所以常规方法,建模易,求解难;
2.特殊方法,借助图象,考虑交点相对于指定区间的两端的特殊位置,建立模型,列出不等式,求解。该法求解相对容易,但建模不易。
3.各种情况参数范围的汇总也是难点,初中学段没学集合,更没学集合的运算交并补,因而很难理解:情况内(且)求交,情况间(或)求并。