求抛物线和直线交点_解读【每日一题70】已知抛物线与线段的交点情况,求参数(范围)...

博客围绕抛物线\(y_1\)与\(y_2\)展开,先证明当\(C\)、\(D\)在线段\(OA\)且\(OC = OE\)时\(AC = OD\),再分情况讨论抛物线\(y_2\)与线段\(AB\)无交点时\(m\)的取值范围。最后综述根据交点情况确定参数的常规与特殊方法及难点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c06cac5f1147e53d355d3423d4bc146b.png

70.已知抛物线y1=-1/4(x+4)^2顶点为A,与y轴的相交于点B,抛物线y2=x^2+2mx+n的顶点P在抛物线y1上,与x轴相交于C,D两点,且xC<xD,与y轴相交于点E.

(1)当C,D两点都在线段OA上且OC=OE时,求证:AC=OD;

(2)若抛物线y2与线段AB没有交点,求m的取值范围.

998f8c797fb43795d036c59101beb3e7.gif

思路:

(1)证明y2的对称轴为x=-2即可,即证明m=2;

(2)分两种情况,分别建立模型,求解。

解读:

抛物线y1的顶点A(-4,0),与y轴交点B(0,-4),则直线AB为y=-x-4;抛物线y2=x^2+2mx+n=(x+m)^2+n-m^2的顶点P(-m,n-m^2)在抛物线y1上,因而

n-m^2=-1/4(4-m)^2,

解得n=-1/4(4-m)^2+m^2=(3m^2+8m-16)/4=(m+4)(3m-4)/4

(1)线段OA:y=0,且0≤x≤-4,

抛物线y2的对称轴:直线x=-m(图中直线PQ),垂直平分线段CD是必然的,当点C,D在线段OA上时,对称轴PQ必然也垂直线段AB,能否平分AB,则要看m的取值是否为-2。

如图PQ⊥AB,垂足为Q(-m,0),则-4≤-m≤0,所以0≤m≤4,

抛物线y2开口向上,穿越x轴负半轴,则抛物线y2的顶点P必在第三象限,与y轴的交点E(0,n)必在y轴的正半轴,此时n>0,即此时OE=n,

当OC=OE=n时,点C(-n,0),因而当x=-n时,y2=0,

即n^2-2mn+n=0,因为此时n>0,所以n=2m-1,

又因为n=(3m^2+8m-16)/4

所以(3m^2+8m-16)/4=2m-1,解得m=2,m=-2,又0≤m≤4,所以m=2,

此时垂足Q(-2,0),所以Q为既为OA的中点,也是CD的中点,因而AC=OD.

62074174b2711de3c1320cdb6e117ab1.png

(2)抛物线y2与线段AB没有交点,有两种情况:

情况1:抛物线y2与直线AB没有交点;

情况2:抛物线y2与直线AB有交点,但交点不在线段AB上。

情况1意味着方程x^2+(2m+1)x+n+4=0没有实数根,

即△=(2m+1)^2-4(n+4)= (2m+1)^2-(3m^2+8m-16)-16

=(m-2)^2-3<0,解得2-√3<m<2+√3

因而情况1时,2-√3<m<2+√3

79238b74044ecb3054fcd5db4c82d585.png

情况2抛物线y2与直线AB有交点,但交点不在线段AB上。

抛物线y2与直线AB有交点,交点不在线段AB上,

意味着又有下面两种情况

情况21 (如图)

△≥0,且yE>-4

5927eb6a909201a071f3a3b314d979e7.png

△=(m-2)^2-3≥0,

解得m≤2-√3或m≥2+√3

yE=n=(3m^2+8m-16)/4>-4

m(3m+8)>0

解得m<-8/3或m>0

综合得m<-8/3或m≥2+√3

情况22 (如图)

△≥0,且xP<-4

ccbbdf359f76cbf5580ad911239d4639.png

△=(m-2)^2-3≥0,

解得m≤2-√3或m≥2+√3

xP=-m<-4

即m>4

综合得m>4

当m=4时,抛物线y2顶点P与A重合,不符合题意,

因而情况2时,m<-8/3或m≥2+√3且m≠4

综合情况1,2得

m<-8/3或m≥2-√3且m≠4,

所以若抛物线y2与线段AB没有交点,则m<-8/3或m≥2-√3且m≠4.

综述:

根据交点情况,确定参数。

1.按常规方法,先求出交点横坐标(方程的解),再根据交点范围,列出不等式,求解即可。但列出的不等式往往是分式,二次根式复合体,非常复杂,求解不等式并不容易。所以常规方法,建模易,求解难;

2.特殊方法,借助图象,考虑交点相对于指定区间的两端的特殊位置,建立模型,列出不等式,求解。该法求解相对容易,但建模不易。

3.各种情况参数范围的汇总也是难点,初中学段没学集合,更没学集合的运算交并补,因而很难理解:情况内(且)求交,情况间(或)求并。


关注“中考数学当百荟”,感谢您的点赞,转发!点击“了解更多”


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值