python opencv3.3以上版本qt无法使用_Win10操作系统 用VS2017 编译 包含Cuda9.0, QT的 Opencv3.3 Debug版本...

本文介绍了在Win10系统下,使用VS2017编译OpenCV3.3时遇到的CUDA9.0和QT兼容问题,以及解决方法,包括修改CUDA工具链版本、处理CMake错误、设置CUDA_HOST_COMPILER等步骤。
摘要由CSDN通过智能技术生成

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效――由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

Opencv中的QT选项可以编译出的程序得到非常好看的界面,而CUDA

选项可以使OpenCV能够使用,GPU来进行计算。本来还想要往添加Python选项,从而使python3.6也能使用opencv的库,但是发现VS默认安装的Python是没有Debug版本的内置库的,编译Opencv的时候回保持,即使按照网上的教程修改python的pyconfig.h也没用,所以干脆就不编译python的Debug版本的Opencv,有必要的话在编译Release版本的python库。

接下来直接进入主题――编译Opencv。

1、首先是配置好CMake,这个可以参考Opencv的教程。勾选with标签下的with_Cuda,with_QT。

2、在开始编译前先做好准备:(安装过程中需要的文件见OpenCVffmpeg,ippicv库.zip)

1)CUDA9.0不支持14.11.25503以上版本的编译工具链,所以如果发现VS使用错误

的工具链 例如 14.14.26428,首先需要用visual studio installer安装好14.11.25503编译工具链,然后需要手动修改VS安装目录下(例如D:\program file\vs 2013\)的VC\Auxiliary\Build中的Microsoft.VCRedistVersion.default.txt、Microsoft.VCToolsVersion.default.props和Microsoft.VCToolsVersion.default.txt,将VS默认编译工具链修改为 14.11.25503(否者即使在CMAKE中指定对于的编译工具,CMAKE还是会使用以上三个文件中的设置)。

在编译过程中可能会碰到一些问题,下面提供各种问题的解决方法:

1. CMake Error: The following variables are used in this project, but they are set to NOTFOUND.

Please set them or make sure they are set and tested correctly in the CMake files:

CUDA_nppi_LIBRARY (ADVANCED)

(1)找到FindCUDA.cmake文件

(2)找到

改为

(3)找到

改为

unset(CUDA_nppitc_LIBRARY CACHE)

(4)找到

修改为

(5)在

opencv\modules\cudev\include\opencv2\cudev\common.hpp

头文件中添加

#include

2、 出现警告 Policy CMP0071 is not set

在 CMakelist.txt中找到

if(POLICY CMP00xx)

endif()

相应位置添加

if(POLICY CMP0071)

endif()

3、Building NVCC (Device) object modules/core/CMakeFiles/cuda_compile.dir/src/cuda/Debug/cuda_compile_generated_gpu_mat.cu.obj

在CMake 中设置 CUDA_GENERATION 为相应CPU的架构

4、出现CMake Error at cuda_compile_generated_absdiff_mat.cu.obj.cmake:206 (message):

添修改CMake选项 CUDA_HOST_COMPLIER 为对应编译器cl.exe所在目录,并且将这个目录添加到PATH环境变量下,该目录中不应该包含空格和中文(可以在CMD(不可以用PowerShell)用mklink /D /J LINK_NAME DEST_DIR 命令将目标目录和LINK_NAME建立软连接,目标目录不能比VS安装目录下的VC目录更深,因为nvcc需要根据cl.exe的相对路径..\..\),否者会报错。

注意:最后一个目录后不需要加"\"

5、opencv_cudacodec.vcxproj 生成失败

在NVIDIA GPU Computing 安装目录(默认是C:\Program Files\NVIDIA GPU Computing Toolkit\)CUDA\v9.0\include目录下复制 dynlink_nvcuvid.h头文件并重命名为nvcuvid.h

6、生成opencv_ml.vcxproj(opencv机械学习库)出现无法解析的外部符号 "public: virtual struct QMetaObject const * __cdecl GuiReceiver::metaObject(void)const " (?metaObject@GuiReceiver@@UEBAPEBUQMetaObject@@XZ)错误。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值