犀牛给曲线增加控制点_Rhino犀牛「一张面建模-02」——浅析蛋壳面的几种做法...

本文分析了Rhino犀牛创建蛋壳面的三种方法:方法一利用均匀分布的控制点;方法二通过双轨扫掠;方法三采用沿路径旋转。方法一曲面效果好,但对称性不足;方法二边界描述准确,易调整;方法三效率高,但内部连续性不佳。选择方法需结合具体需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Rhino犀牛本文将对一张面生成贝壳面的几种做法做一个简单的分析。

在许多产品中都会使用到蛋壳面,最经典的想必就是苹果电脑了。(当然它并不是用文中的方式建的,他的建模更加的精细复杂)

1fb02bb29d725d90c68166abb73513b3.png

运用一张面建模构建贝壳面的方式大致有三种,以如下图造型为例。

503d93b5aeb32a3d61b318c958f24e90.png
2ab72070580081e53665f0275b43a19c.png

方法一

首先绘制一个平面。

996103c8b1400e15372356f1996def0e.png

将曲面重建为uv均为5阶6点。

2cffaa11facb11733d43e94037538b73.png

使用物件锁点工具栏中的“两点间”指令,将这块面的角点移动到其相邻两个控制点重点

13d744227e2a4486f295e14061b85ab9.png
4a7e61b8d8b95526a3a28bfc5c0b29ac.png

对4个角点进行同样操作。

9828f7b96a0e70cd1a9d09399060e3c0.png

选取除边界之外的控制点。

562628e29dd66b9a5a862526210d7fb1.png

使用操作轴向上拖动合适距离。

5ea5e037d6404e684a7df3c992680976.png

调整控制点来控制造型,构建完成。

70e340a0bf8f79b0118717b64cb91569.png

方法二

绘制一侧的一条边界曲线

f4dde171d24acf15c0a6b9c65db41e08.png

镜像后打开其编辑点。

8c6ca6bb1f0c93acf456dfdcfb17a5e1.png

以相对应的编辑点为端点,绘制截面线。

608bceb023cd74e168932b23961ccd89.png

使用双轨扫掠命令,分别选择轨道线和截面线。

ad4b14b91c09868926044c9841630f98.png

勾选最简扫掠。

09646c46d3e15c6d56d3c46cd490b491.png

得到如下控制点的曲面

35059df894a3dacfc4ca0185cd786939.png

调整控制点来控制造型,构建完成。

40adadba29d1343928458e0c8ea27d2a.png

首先来看方法一和方法二是如何生成的贝壳面具备怎么样的结构,众所周知,曲面一般都是具有uv方向,所以具有4边结构。

51cde1d5e9f68b301be15ea9122390aa.png

方法一的4边结构相对均匀的分布。

方法二的4边结构中其中两边退化成为一个点。

c65a90c343d0afd25fc8e87140cf10d1.png

打开vsr的固定斑马线查看效果。

显然方法一的斑马更为顺畅,方法二的斑马在端点处不够好(大部分情况调整控制点无法优化这个问题)。

那是因为方法一的4个边界分布的更为均匀,而方法二的其中两条边被聚集到一个点上了,所以会发生这样的问题。

有的朋友看到这里会说,那方法一既好调整,又不会在边界处发生斑马线的弯折,是不是就是用来做一张面贝壳面的最好方法呢,并不一定是!

适合用来的做造型的方法,需要用多个维度来评价。

通过上述对这两者的描述:

曲面效果,方法一胜出。

接下来是边界造型描述的准确度和便捷性角度。

方法一由于4边分布均匀,导致角点“退化”成了边缘的“倒角”,导致实际需要两条曲面的相接来控制倒角处的造型,这样的控制方式,对于新手来说是不友好的。

9971aac515bd6aaa6b79ea039dde6739.png
8081ca520dc380080488cce06ec73d8c.png

方法二的边界则直接是由一条贝塞尔曲线控制,曲线能够保持高度顺滑,并且更直观,更易于调整。

5875a2faf256852d6e811dd5bf9ed7e1.png

边界造型描述的准确度和便捷性角度方法二略胜于方法一。

第三个维度从曲面的“对称性”维度来判断(我也不知该怎么形容,姑且看下去)

在做与自身对称的形态时,方法一就显得很无力了,完全无法描述“对称性”了。因为其中一个控制点分身乏术,无法控制这个区域的相切性。如下图所示(这里可能需要动手做一遍理解起来会更容易)。

ba6b6c9ccf656748ddfbbf70b32adcb5.png

方法二就完全没有这种问题,具有完美对称性。

e00f87757c59b3e5505fbd617b6a705e.png

曲面的“对称性”维度,方法二完胜方法一。

看了这么,大家也许会问,方法三藏了这么久是不是,有它有更好的解决方法,看下去~

方法三

绘制轨道线和截面线。

然后使用“RailRevolve”指令,(沿路径旋转,旋转命令的右键就是这个指令)。

f5cdee08fad835660d0a9524f94a4471.png
c2796857dbdeca07d6a1860cc5baa5d0.png

怎么说这个方法额,对于轨道线和截面线都可以有精准的描述,但是,曲面内部的可调整性不够好,而且曲面上有两条合并在一起的边缘线,有时候可能无关紧要,但是模型复杂之后进行分割、布尔运算时,会把曲面分割成多个面。

在对曲面内部连续性有要求不高的时候,可以使用这种方式。

高质量曲面基本不会采用这种方式,因为这种结构调高质量面需要花费更多的时间。

结尾为大家归纳一下:

方法一:对于有一定曲面经验、造型要求自由度大、单张面时会有更好的效果。

方法二:实用性最好,角落处的瑕疵可以通过后续手段弥补。

方法三:对于质量要求不高且造型规律、明确的曲面的快速构建,有很高效率。

希望通过这期一张面建模系列之蛋壳面浅析,加强大家对曲面的理解,这样哪怕是做超高精度、真正标准精确的蛋壳面一样可以游刃有余。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值