2021上海高考小三门成绩查询,高考小三门怎么算分 上海2021高考小三门

上海高考小三门采用等级赋分制度,满分70分,共分为11个等级,每级相差3分。考生的实际得分取决于成绩排名,而非卷面分数。例如,前5%的考生可得70分,而6%~15%的考生可得67分。高考总分由语数英三科原始分和小三门等级分组成,共660分。实际分值计算时,小三门每门只有30分有效分。了解这一制度有助于考生理解成绩计算方式并制定备考策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高考小三门怎么算分,通常高考小三门主要指语数英,以及选科而来的小三门,上海2021高考的小三门通常采用赋分形式计算,具体是怎么算的呢?小编收录整理了一些信息,供大家参考。高考小三门怎么算分

上海高考“小三门”通过等级赋分制度进行算分。上海市考试院公布的相关政策可知,上海市的高考满分为660分,其中语文、数学、外语三科的满分均为150分,而从物理、历史、化学、生物、政治、地理这6科中选考的“小三门”,每科满分均为70分。

01

高考小三门是如何赋分的

上海市的高考等级赋分制,将考生的成绩排名从高到低依次划分为11个等级,每级的分差为3分,具体表现为:

1、前5%的学生所对应的等级为A+,可赋得70分;

2、成绩排名全市6%~15%的学生所对应的等级为A,可赋得67分;

3、成绩排名全市16%~25%的学生所对应的等级为B+,可赋得64分;

4、成绩排名全市26%~35%的学生所对应的等级为B,可赋得61分;

5、成绩排名全市36%~45%的学生所对应的等级为B-,可赋得58分;

6、成绩排名全市46%~55%的学生所对应的等级为C+,可赋得55分;

7、成绩排名全市56%~65%的学生所对应的等级为C,可赋得52分;

8、成绩排名全市66%~75%的学生所对应的等级为C-,可赋得49分;

9、成绩排名全市76%~85%的学生所对应的等级为D+,可赋得46分;

10、成绩排名全市86%~95%的学生所对应的等级为D,可赋得43分;

11、成绩排名全市96%~100%的学生所对应的等级为E,可赋得40分。

c50d7f410a0d8113aacb6ad40db65926.png

02

上海高考分数是如何折算的

语文150分;数学150分;英语150分(英语可以考两次,取最高分值的那次计入总分)

然后从物理、化学、生物、政治、历史、地理中选择三门作为加试科目,俗称小三门。

小三门每门总分70分,但实际分值就只有30分

高考总分=150+150+150+70+70+70=660分

高考实际分值=150+150+150+30+30+30=540分(只要你六门合格考全部通过,小三门托底40分就已经拿到了。真正的分差只有540分)

小三门分值的计算不是按实际得分,而是按照人数比例进行等级划分,每个等级差3分

举个例子:

情况一:甲与乙同时参加了物理等级考,甲考卷得分90分,乙考卷得分89分。按照人数比例划分,甲取得了A+等级拿到了70分,乙取得了A等级拿到了67分。虽然考卷得分甲只比乙高1分,但是由于计分是按照等级划分的,所以乙比甲实际得分少得3分。

情况二:甲与乙同时参加了物理等级考,甲考卷得分90分,乙考卷得分87分。但是按照人数比例划分,甲与乙都被划入到了A+等级,都取得了70分。虽然乙比甲考卷上少拿了3分,但是他运气好,没有被挤出A+等级,所以乙的实际得分也是70分。

以上是有关高考小三门怎么算分的相关内容,希望对伙伴们有所帮助,想要了解更多资讯,请继续关注更三高考站。

资源下载链接为: https://pan.quark.cn/s/ab08c24cda4d 本项目基于 PyTorch 实现了 CSRNet(卷积稀疏表示网络)人群计数模型。CSRNet 是一种高效且精准的人群密度估计方法,尤其适合高密度场景下的人群计数。该模型借助卷积神经网络(CNN)的特性,利用稀疏表示来应对复杂背景和密集人群的挑战。以下将详细介绍 CSRNet 的核心概念、结构及实现过程,并阐述人群计数的重要性。 人群计数在公共场所安全监控、交通管理和大型活动组织等领域极为关键。准确估计人群数量有助于保障安全和优化管理。传统计数方法如人工计数或基于规则的方法效率低且易出错而,深度学习技术的引入,尤其是 CSRNet 这类模型,显著提高了计数的准确性和效率。 CSRNet 的核心在于其深度卷积网络结构和稀疏表示能力。该模型通过多尺度特征提取,适应不同大小的人头。其架构包含多个卷积层,每层后接 Leaky ReLU 激活函数,增强非线性表达能力。此外,CSRNet 引入了空洞卷积(也称 atrous convolution),可在不增加参数数量的情况下扩大感受野,更高效地捕捉大范围信息。具体架构包括:输入层接收预处理后的图像;基础网络通常使用预训练的 VGG16 提取多层次特征;多尺度特征融合通过不同扩张率的空洞卷积获得不同辨率的特征图;解码器利用反卷积操作将低辨率特征图恢复至原始尺寸,结合多尺度信息重建上下文;稀疏表示层是 CSRNet 的独特之处,通过稀疏编码和解码,将高维特征转换为低维稀疏表示,降低背景噪声影响,提升人头检测精度;输出层通过 1×1 卷积将特征图转化为人群密度图,再经全局平均池化和全连接层得到最终计数结果。 在实现过程中,需注意以下几点:数据预处理,如缩放、归一化、增强等,以提升模型泛化能力;训练策略,包括数据集划、学习率调度、损失函数选择(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值