
机器学习基础算法
weixin_34855969
这个作者很懒,什么都没留下…
展开
-
逻辑回归原理详解
逻辑回归原理详解 逻辑回归主要用于解决分类问题,并且是对于概率的分类,例如今天是雨天还是晴天,是雨天就是0概率,是晴天就是1概率。通常我们预测出的情况是今天是晴天的概率值。谈及逻辑回归的原理,需要先从广义线性回归(GLM)讲起: 广义线性回归(GLM) 广义线性回归满足以下的三个条件: 对于参数θ\thetaθ,y|x满足指数族分布 T(y)=yT(y)=yT(y)=y,T(y)T(y)T(y)...原创 2020-03-26 14:05:58 · 289 阅读 · 0 评论 -
线性回归
原创 2020-03-20 15:20:56 · 93 阅读 · 0 评论 -
逻辑回归
我们可以使用线性模型进行回归,但是如果我们想要做分类任务,此时,我们该如何做呢?这个时候我们先考虑一下之前使用的线性模型是不是可以解决这个问题。首先,做分类任务的话,我们想要得到的预测值必定是离散的。但是在线性回归模型中我们用的是直线来进行拟合。这样,我们的拟合函数的值必然是连续的。那么我们第一个需要思考的问题就是如何把这些连续的值映射成为离散的值。 对于二分类的问题,我们想要做的是将预测的结果...原创 2019-01-26 13:07:28 · 155 阅读 · 0 评论 -
多变量线性回归
本节需要理解的问题如下: 1.多变量线性回归的意义 2.多变量线性回归的代价函数的意义 3.多变量线性回归的梯度下降 4.公式的向量化(建议自己推导一遍,有助于理解) 我们之前探讨了单变量的线性回归,就是根据一个变量来预测目标。那么,我们现在来思考一下,在现实生活中,对一个事情的结果产生影响的因素一般不会是一个。例如,当我们想要去预测房价时,我们所要考虑的因素可能会有面积,楼层,房屋的结...原创 2019-01-25 13:01:24 · 373 阅读 · 0 评论 -
单变量线性回归(附带matlab代码)
对于本节学习,你需要理解以下问题: 1.什么是线性回归 2.什么是最小二乘估计 3.什么是代价函数 4.梯度下降的意义 5.理解梯度下降的公式及其参数的含义 看到线性回归算法这个名称,首先我们从字面的意义上理解。线性顾名思义就是直线,算法就是一些数学公式。难以理解的就是何为回归,所谓回归就是预测。故此,我们可以很容易的想到线性回归算法的作用:就是通过算法模拟出一条直线在做预测。 ...原创 2019-01-24 13:51:08 · 2583 阅读 · 0 评论