y =tan x
的图像,并能根据图像理解正弦函数、
余弦函数在
[ 0
,
2π ]
,正切函数的性质
(
如单调性、最大值和最小值、图像与
x
轴的交点等
)
2.
了解三角函数
y = A sin ( ωx + φ )
的实际意义及其参数
A
,
ω
,
φ
对函数图像变化的影响;能画出
y =
A sin (ωx +φ )
的简图,能由正弦曲线
y =sin x
通过平移、伸缩变换得到
y = A sin ( ωx + φ )
的图像
.
3.
会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型
.
二、近五年江苏高考
年份
2018
年
2017
年
2016
年
考查知识点
三角函数的图像
与性质
三角函数的最值
正弦函数与余弦函数的图像和性
质
1.
三角函数的图像与性质是高考中的必考点,对这部分内容的考查,高考中大多以中、低档题为主,主要
集中于对函数的周期、
图像、
单调性、值域
(
或最值
)
等几个方面的考查
.
要解决此类问题,
要求学生熟练地
掌握三角函数的图像,及正弦函数、余弦函数、正切函数的最基本的性质,并能运用这些性质去熟练地解
题
.
2.
利用三角函数的性质解决问题时,要重视化归思想的运用,即将复杂的三角函数转化为基本的正弦、余
弦、正切函数来处理
三、考点总结:
1
、函数
f ( x ) = A sin ( ωx + φ )
的图像的平移和伸缩变换以及根据图像确定
A
,
ω
,
φ
问题是高考的热
点,题型多样,难度中低档,主要考查识图、用图的能力,同时考查利用三角公式进行三角恒等变换的能
力。
2
、要牢牢记住函数
f ( x ) = A sin ( ωx + φ )
的图像和性质。