matlab验证费根鲍姆常数,费根鲍姆常数

此词条暂由彩云小译翻译,翻译字数共266,未经人工整理和审校,带来阅读不便,请见谅。

文件:Feigenbaum.png

Feigenbaum constant δ expresses the limit of the ratio of distances between consecutive bifurcation diagram on Li / Li + 1

Feigenbaum constant δ expresses the limit of the ratio of distances between consecutive bifurcation diagram on Li / Li + 1

Feigenbaum 常数 δ 表示 l < sub > i /l < sub > i + 1 上连续分枝图间距离比的极限值

In mathematics, specifically bifurcation theory, the Feigenbaum constants are two mathematical constants which both express ratios in a bifurcation diagram for a non-linear map. They are named after the physicist Mitchell J. Feigenbaum.

In mathematics, specifically bifurcation theory, the Feigenbaum constants are two mathematical constants which both express ratios in a bifurcation diagram for a non-linear map. They are named after the physicist Mitchell J. Feigenbaum.

在数学中,特别是分岔理论,费根鲍姆常数是两个数学常数,它们都表示一个非线性映射的分枝图的比率。它们以物理学家米切尔 · 费根鲍姆的名字命名。

History

Feigenbaum originally related the first constant to the period-doubling bifurcations in the logistic map, but also showed it to hold for all one-dimensional maps with a single quadratic maximum. As a consequence of this generality, every chaotic system that corresponds to this description will bifurcate at the same rate. It was discovered in 1975.

Feigenbaum originally related the first constant to the period-doubling bifurcations in the logistic map, but also showed it to hold for all one-dimensional maps with a single quadratic maximum. As a consequence of this generality, every chaotic system that corresponds to this description will bifurcate at the same rate. It was discovered in 1975.

Feigenbaum 最初在 logistic 映射中把第一个常数与倍周期分岔联系起来,但也证明了它对所有一维映射都具有单一二次最大值。由于这种普遍性,每一个符合这种描述的混沌系统都将以相同的速率分叉。它于1975年被发现。

The first constant

A simple rational approximation is (13/11) * (17/11) * (37/27).

一个简单的有理逼近是(13/11) * (17/11) * (37/27)。

The first Feigenbaum constant is the limiting ratio of each bifurcation interval to the next between every period doubling, of a one-parameter map

[math]\displaystyle{ x_{i+1} = f(x_i), }[/math]

where f(x) is a function parameterized by the bifurcation parameter a.

Both numbers are believed to be transcendental, although they have not been proven to be so. There is also no known proof that either constant is irrational.

这两个数字都被认为是先验的,尽管它们还没有被证实。也没有已知的证据证明这两个常数都是无理的。

It is given by the limit

The first proof of the universality of the Feigenbaum constants carried out by Oscar Lanford in 1982 (with a small correction by Jean-Pierre Eckmann and Peter Wittwer of the University of Geneva in 1987) was computer-assisted. Over the years, non-numerical methods were discovered for different parts of the proof, aiding Mikhail Lyubich in producing the first complete non-numerical proof.

1982年,Oscar Lanford 首次证明了费根鲍姆常数的普适性(1987年,日内瓦大学的让·彼埃尔·埃克曼和 Peter Wittwer 做了一个小小的修正) ,这是计算机辅助的。多年来,非数值方法被发现的不同部分的证明,帮助米哈伊尔柳比奇产生第一个完整的非数值证明。

[math]\displaystyle{ \delta = \lim_{n \to \infty} \frac{a_{n-1} - a_{n-2}}{a_n - a_{n-1}} = 4.669\,201\,609\,\ldots, }[/math]

where an are discrete values of a at the n-th period doubling.

Names

Feigenbaum bifurcation velocity

delta

Value

30 decimal places : δ = 模板:Gaps

A simple rational approximation is 4 * 307 / 263

Illustration

Non-linear maps

To see how this number arises, consider the real one-parameter map

[math]\displaystyle{ f(x)=a-x^2. }[/math]

|first=Keith

第一名: Keith

Here a is the bifurcation parameter, x is the variable. The values of a for which the period doubles (e.g. the largest value for a with no period-2 orbit, or the largest a with no period-4 orbit), are a1, a2 etc. These are tabulated below:

|last=Briggs

| last = Briggs

journal=Mathematics of Computation

journal = 计算数学

date=July 1991

日期 = 1991年7月

n

pages=435–439

页数 = 435-439

Period

volume=57

57

Bifurcation parameter (an)

title=A Precise Calculation of the Feigenbaum Constants

费根鲍姆常数的精确计算

doi = 10.1090/S0025-5718-1991-1079009-6

doi = 10.1090/S0025-5718-1991-1079009-6

publisher=University of Melbourne

publisher = 墨尔本大学

2

year=1997

1997年

4

degree=PhD

学位 = 哲学博士

1.25

title=Feigenbaum scaling in discrete dynamical systems

离散动力系统中的 Feigenbaum 标度

}}

}}

3

first1=David

1 = David

8

last1=Broadhurst

1 = Broadhurst

4.2337

title= Feigenbaum constants to 1018 decimal places

title = 费根鲍姆常数小数点后1018位

date=22 March 1999

日期 = 1999年3月22日

4

}}

}}

16

4.5515

5

32

4.6458

6

64

4.6639

7

Category:Dynamical systems

类别: 动力系统

128

Category:Mathematical constants

类别: 数学常数

模板:Val

Category:Bifurcation theory

类别: 分岔理论

4.6682

Category:Chaos theory

范畴: 混沌理论

This page was moved from wikipedia:en:Feigenbaum constants. Its edit history can be viewed at 费根鲍姆常数/edithistory

Chaos: An Introduction to Dynamical Systems, K.T. Alligood, T.D. Sauer, J.A. Yorke, Springer, 1996,

Non-Linear Ordinary Differential Equations: Introduction for Scientists and Engineers (4th Edition), D. W. Jordan, P. Smith, Oxford University Press, 2007,

.

Alligood, p. 503.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值