小学阶段要学习的运算主要有加、减、乘、除、简单的乘方。一些基础的运算在我们的日常生活中几乎每天都会遇到。你是怎么算的呢?我想很多人都会依赖计算器吧。
最近看的一个综艺里面,有个长得很像《飞屋环游记》里的卡尔爷爷的老爷爷,他的计算能力特别出色,被店里的人公认为“人工计算器”。当负责财务的奶奶还在用计算器一笔一笔相加算账的时候,爷爷早就心算出了钱数。
其实,如果能根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,我们也能简化计算过程,直接得出结果,秀一把速算技能。这就是我们今天要说的简便运算。
工欲善其事,必先利其器。要想熟练地进行简便计算,要求同学们对所学的性质、定律、规律等有透彻的理解和正确的使用,并能巧妙地利用凑整、拆项、转化、拆数等技巧来达到速算的目的。
基本运算定律1.加法交换律:a+b=b+a(两个数相加,交换加数的位置,它们的和不变)
2.加法结合律:(a+b)+c=a+(b+c)(三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变)
3.乘法交换律:a×b=b×a(两个数相乘,交换因数的位置,它们的积不变)
4.乘法结合律:(a×b)×c=a×(b×c)(三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变)
5.乘法分配律:(a+b)×c=a×c+b×c(两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加)
6.乘法的其他性质:a×b=(a×c)×(b÷c)(一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,积不变)
7.减法的性质:
a-b-c=a-(b+c)(从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变)
a-b=(a+c)-(b+c);a-b=(a-c)-(b-c)(被减数、减数同时加上或减去一个数,差不变)
8.除法的性质:
a÷b=(a×c)÷(b×c);a÷b=(a÷c)÷(b÷c)(被除数和除数同时乘或除以相同的一个数< 0除外>,商不变)
a÷b÷c=a÷(b×c)(一个数连续被两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变)
简便运算题型
1.同种运算想交换律和结合律;交换就是为了结合。
2.有乘有加(或有减)有相同数,要想乘法分配律,无相同数找倍数关系变相同数用乘法分配律(即两个乘法算式相加或相减,就可以用乘法分配律)。
3.加减混合运算,看清数字特点,用好减法的性质。
4.乘除混合运算用好除法的性质(即乘除法添、去括号规则)。
5.牢记见25想4,见125想8,见5想2等积能凑整的特殊数字,用好商不变规律。
6.无括号的加减混合运算和乘除混合运算,掌握运算性质,用好搬家规则。
简便运算思路1.灵活运用各类运算的性质、定律等。
2.可能打乱常规的计算顺序。
3.拆数或转化时,数的大小不能改变。
4.添加或去掉小括号时,注意运算符号是否要改变。

例1:简便计算:1999+199+19+4
思路:本题考查整数加减法的简便计算,解题的关键是将接近整数的数凑成整数,可以将现有的数拆开也可以通过加上或减去一个数完成,当然多加的数要减去,多减的要加上哦!
观察本题的特点可以发现,1999、199、19都接近整千、整百和整十的数并且也都少1,因此可以将4拆出3个1,分给它们。
解:
(1999+1)+(199+1)(19+1)+1
=2000+200+20+1
=2221
例2:简便计算:768-253+53
思路:本题考查用减法的性质的相关知识进行简便计算,由 a-b+c=a-(b-c)知,可以将253和53结合在一起。
解:
768-253+53
=768-(253-53)
=768-200
=568

简便计算:1×2+2×3+3×4+…+29×30=
