已知原函数和导函数的关系_构造函数法解有关“已知原函数与导函数的不等关系”的问题...

       用构造函数法解有关“已知原函数与导函数的不等关系”的题型是我们高考的重点和难点,而这种题型只要掌握其通性通法,是很好解决的,问你就可以在高考中将这种难题变成我们掌握熟悉的必得分题,那如何快速精准掌握这种题型的通性通法呢,我们来学习一下吧!(以下是本人2015年发表的相关论文):

在2015年的高考刚刚拉下了帷幕,数学试题讨论也众说纷纭,作为一名高三数学老师,全国课标2理数卷试题给我影响最深的是选择题的12题,这道题由导函数和原函数不等关系出发,来求解关于函数的性质问题,主要考察了函数与导数的构造,关键是如何抓住关系式特征,构造出对应的函数,那如何抓特征构造函数呢?这里,我们就把目光定位在这道题的解法上,来看下构造函数法解决这类问题时的巧妙之处:

    首先我们来看下12题及其解法:

fe9bb7b246bd8e975aee82ffb2d44430.png

本题利用了构造新的函数,使得要解决的的问题转换成了的问题,问题便巧妙的迎刃而解了。构造辅助函数是高中数学中一种常用的方法,解题中若遇到导函数和原函数不等关系时,可设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,

这种构造函数的方法学生并不陌生,同样题型在2013年高考辽宁理科卷中已经出现我们来看下:

b931e088c7b7bca37032d356874bfc4e.png

有这两题大家发现,它们题型基本属于同一模式,由此我们可以总结一般通用方法是:若已知减的不等关系,则构造除式函数,如上例【2015高考新课标2,理12】中已知,则构造:若已知加的不等关系,则构造乘式函数,如上例【2013辽宁,理12】中已知x2f′(x)+2xf(x)=,则构造F(x)=x2f(x):

同样,还有2014年湖南文科卷中也有类似题型

6ba1304d18303c4ffa035af03e1dccac.png

    在近几年各省份的高考题,模拟考试题中,处处可见该题型的身影,我们必须熟练的掌握其规律和解题技巧,才能更好的再今后的复习中完胜该类型所有题目,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值