自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(473)
  • 资源 (5)
  • 收藏
  • 关注

翻译 如何写出一份完整的发明专利

名称+领域+方案+效果,结尾一个句号,300字以内。(方案效果可以不用太详细)方法:本发明提供一种卷积神经网络方法,领域:属于卷积神经网络领域。

2022-11-27 21:01:14 21

原创 公式编辑器里面添加空格

最近文档写的有点多,遇到了一个尴尬的问题,公式编辑器里面字符之间怎么加空格?在需要插入空格的地方,插入该字符。

2022-11-13 20:12:34 65

原创 ransac直线段拟合

也就是一开始设定一个无穷大的迭代次数,然后每次更新模型参数估计的时候,用当前的“内点”比值当成 来估算出迭代次数。“内点”就是组成模型参数的数据,“外点”就是不适合模型的数据。同时RANSAC假设:在给定一组含有少部分“内点”的数据,存在一个程序可以估计出符合“内点”的模型。也就是说,在迭代 k 次的情况下, (1-tn)k就是 k 次迭代计算模型都至少采样到一个“外点”去计算模型的概率。4、比较当前模型和之前推出的最好的模型的“内点“的数量,记录最大“内点”数的模型参数和“内点”数;

2022-11-06 15:32:42 53

原创 cv2.approxPolyDP函数实现轮廓线的多边形逼近

实际项目需要拟合轮廓线,提取更贴合目标的四个点,于是找到了cv2.approxPolyDP函数。若为 true,该函数返回一个带符号的面积值,正负取决于轮廓的方向(顺时针还是逆时针)。closed:如果为true,则闭合近似曲线(其第一个和最后一个顶点为连接的);contour:输入的二维点集(轮廓顶点),可以是 vector 或 Mat 类型。curve:输入的二维点集(轮廓顶点),可以是 vector 或 Mat 类型。epsilon:指定近似精度的参数, 这是原始曲线和它的近似之间最大距离。

2022-11-01 22:18:41 261

原创 coco目标检测排名

可以看到截止目前2022.11月,指标最高的为FD-SwinV2-F,ap为64.2。有同学整理了coco上排名靠前的检测算法,并做了摘要。

2022-10-29 18:31:18 1064

原创 错误处理:docker io.containerd.runtime.v2.task no such file or directory

报错:docker io.containerd.runtime.v2.task no such file or directory,显卡驱动升级后docker运行时不匹配错误。原因:驱动升级,驱动相关的nvidia-container-toolkit未升级。

2022-10-25 21:37:50 294

原创 pytorch 修改预训练模型

torchvision中提供了很多训练好的模型,这些模型是在1000类,224*224的imagenet中训练得到的,很多时候不适合我们自己的数据,可以根据需要进行修改。最后,构建一个对象,并加载resnet预训练的参数就可以了。

2022-10-22 16:00:13 91

原创 ubuntu 安装 notepad++

Notepad++官方只有Win系统的版本,因此要在Linux系统中运行,还需要wine运行环境。也可以在命令行直接输入notepad-plus-plus来启动软件。然后,就可以享受Notepad++给你带来的一致体验了。如何在Ubuntu中通过。

2022-10-22 15:56:22 655

转载 ubuntu安装SVN开机启动

查看当前启动level,会打印一个数字,把这个数字加到脚本 startsvn.sh 的 Default-Start 后面,然后从步骤 3再执行一遍试试。

2022-10-21 22:17:59 81

原创 Linux下apt-get命令详解(安装、卸载、更新、查询软件包)

apt-get 命令适用于 deb 包管理式的 Linux 操作系统(Debian、Ubuntu等),主要用于自动从互联网软件仓库中搜索、下载、安装、升级、卸载软件或操作系统。下面给大家简单分享一下:apt-get命令的用法,具体应该如何使用apt-get命令?

2022-10-19 21:30:02 560

原创 vs2017下,release模式下调试debug信息-不优化变量

设置为:生成调试信息(/DEBUG)设置为:已禁用(/Od)

2022-10-19 21:23:10 656

原创 ubuntu 16.04 SSH 无法远程登录问题

找到:PermitRootLogin prohibit-password禁用。解决ubuntu 16.04 SSH 无法远程登录问题。添加:PermitRootLogin yes。step1、安装 open ssh。step2、修改root密码。

2022-09-22 21:46:29 198

原创 win10 编译 Pangolin

Pangolin 库依赖 Glew 和 freeglut,所以在编译 Pangolin 之前,先编译 Glew 和 freeglut,这两个包编译后统一放在OpenGL文件夹。在 D:/env/OpenGL 文件夹下新建 bin、include、lib文件夹。

2022-09-22 21:41:24 263

原创 win10 编译Eigen库

将环境设置为“Debug”和“×64”,然后在VS中打开属性管理器界面,右键“Debug|×64”,选择“添加新项目属性表”。最后,把“D:\env\Eigen3.4\share\eigen3\cmake”中的四个.cmake文件复制到“D:\env\Eigen3.4\include\eigen3”目录下。等待VS分析工程和文件完毕后,确保VS当前是“Release”和“×64”模式,在“解决方案资源管理器”中,右键“ALL_BUILD”,点击“生成”。点击“Configure”,设置环境。

2022-09-22 21:32:18 251 1

转载 偏航角,滚动角,俯仰角

原文排版稍微有点乱,重新排版,标记重点词。

2022-09-19 21:54:01 271

原创 UTM 坐标系

UTM(Universal Transverse Mercator Grid System, 通用横墨卡托网格系统)

2022-09-19 21:42:01 301 1

原创 ceres 库引用错误处理

2、ceres\internal\numeric_diff.h(150): error C2589: “(”:“::”右边的非法标记。方法1、设置项目属性,在预定义处理器中添加定义NOMINMAX来禁止使用Vsual C++的min/max宏定义。项目属性 -> C/C++ -> 预处理器 -> 预处理器定义 (此处添加预定义编译开关 NOMINMAX)器->预处理器定义,加:GLOG_NO_ABBREVIATED_SEVERITIES。原因:min/max两个宏被污染了。项目属性->C/C++ ->

2022-09-07 22:41:25 275

原创 cv2 可视化操作整理(直线,圆,矩形,多边形,文本)

经常需要图像上显示下结果,用的时候却总差几个参数记不清,整理记录下。

2022-09-07 22:38:58 424

原创 c++ 中 cout 对小数输出格式化

输出浮点数,显示时格式有点乱,且自动转成科学计数方式,不直观。查找,解决浮点数格式化问题。

2022-09-07 22:34:29 227

原创 pytorch 混合精度训练

半精度混合训练,省显存且能提速一倍。混合精度训练,需要硬件设备支持才可以。混合精度需要Tensor Core支持,P4卡不支持混合精度训练。Tensor Core:我们知道在深度学习中大量的运算都是在高维矩阵(张量 Tensor)间进行的,Tensor Core可以让tensor的计算速度急速上升。Tensor Core专业执行矩阵数学运算,适用于深度学习和某些类型的HPC。...

2022-08-28 21:24:23 137

原创 HRNet人体关键点检测

每个关键点的位置,都是通过调整最高热值来进行判断的。首先使用2个strided的卷积,减少输入图像的分辨率,获得初步特征图,然后把该特征图作为一个主体网络的输入,该主体网络的输出和输入的分辨率一样,其会其估算关键点的heatmaps。传统的单人位姿估计方法大多采用概率图形模型或图形结构模型,最近通过深度学习,自动提取特征方式,相对于传统的算法,提升是比较明显的。有的位姿估计网络是通过串联高分辨率子网来建立的,每个子网形成一个stage,由一系列卷积组成,并且在相邻的子网之间有一个下样本层来将分辨率减半。..

2022-08-28 12:53:13 1230

原创 再看目标检测map指标

左图模型只检测到一个目标,且是正确的,根据定义Precision=1,但是漏掉了很多目标。右图,检测到比实际多很多的框,数量取胜,所有目标均检测到,根据定义Recall=1,但是有很多的错误。统计每张图的与真值有交集的检测框:GT ID、置信度、是否是目标(IOU>0.5),然后按照置信度倒排序。Precision(查准率、精度):TP / (TP + FP) 模型预测的所有目标中,预测正确的比例;Recall(查全率):TP / (TP + FN) 所有真实目标中,模型预测正确的目标比例;...

2022-08-27 20:57:43 703

原创 cmd关闭kill进程

3、taskkill /pid xxx -f 终止相应进程。2、输入命令tasklist,查看运行中的进程;

2022-08-21 09:57:23 312

原创 RuntimeError: Expected a ‘cuda‘ device type for generator but found ‘cpu‘

使用pytoch1.10训练时,报错:RuntimeError: Expected a ‘cuda‘ device type for generator but found ‘cpu‘。将torch.set_default_tensor_type(‘torch.FloatTensor’)改为:torch.set_default_tensor_type(‘torch.cuda.FloatTensor’)。2、修改将torch.set_default_tensor_type。............

2022-08-19 09:44:21 1243 1

原创 5、从RCNN到FasterRCNN(各模块独立训练到端到端检测框架)

使用训练好的分类网络、SVM分类器,输入一张图,首先SS提取1~2k个候选区域,之后所有候选区域图像进去分类器提取4096维特征,然后SVM判断是否是该类别目标,之后对每个类别NMS,最后使用类别回归器进行位置修正。三种尺度(面积){128^2,256^2,512^2},三种比例{1:1, 1:2, 2:1},每个位置(每个滑动窗口)在原图上都对应有3x3=9个anchor。u对应目标真实类别的标签。金字塔池化层,对输入特征图进行不同规格的池化,然后将输出的特征图拉成向量,固定拼接,形成固定长度的输出。..

2022-08-14 17:32:53 221

翻译 4、Faster R-CNN(翻译+注释)

本作将引入一个区域推荐网络(RPN)和检测网络共享全图像卷积特征,使得区域推荐的开销几近为0。一个RPN是一个全卷积网络技能预测物体的边框,同时也能对该位置进行物体打分。RPN通过端到端的训练可以产生高质量的推荐区域,然后再用Fast R-CNN进行检测。通过共享卷积特征,我们进一步整合RPN和Fast R-CNN到一个网络,用近期流行的“术语”说,就是一种“注意力”机制。RPN组件会告诉整合网络去看哪个部分。对于非常深的VGG-16模型[3]。...

2022-08-13 19:04:45 161

翻译 3、Fast R-CNN(翻译+注释)

本文提出了一个快速的基于区域推荐的卷积网络方法(Fast R-CNN)用于对象检测。Fast R-CNN在前人工作的基础上使用深度卷积网络,可以更有效地分类物体推荐。相比之前的工作,Fast R-CNN进行了多项创新,在提高了检测精度的同时,也提高了训练和测试速度。Fast R-CNN训练了一个超深VGG16网络,训练时间比R-CNN快9倍,测试时间快213倍,在PASCAL VOC2012上达到了更高的mAP。相比SPPnet,Fast R-CNN训练快3倍,测试快10倍,并且更加准确。......

2022-08-13 18:50:49 106

翻译 2、目标检测 SPP-Net(翻译+标注)

当前深度卷积神经网络(CNNs)都需要输入的图像尺寸固定(比如224×224)。这种人为的需要导致面对任意尺寸和比例的图像或子图像时降低识别的精度。本文中,我们给网络配上一个叫做“空间金字塔池化”(spatial pyramid pooling,)的池化策略以消除上述限制。这个我们称之为SPP-net的网络结构能够产生固定大小的表示(representation)而不关心输入图像的尺寸或比例。金字塔池化对物体的形变十分鲁棒。由于诸多优点,SPP-net可以普遍帮助改进各类基于CNN的图像分类方法。...

2022-08-10 21:30:38 40

转载 1、目标检测 RCNN(翻译+标注)

但是这里面的样本确定和CNN中的样本也是不一样的啦,因为CNN需要大量的样本去驱动特征提取,因此正样本的阈值比较低。而SVM适合小样本的分类,通过反复的实验,RCNN的SVM训练将ground truth样本作为正样本,而IOU>0.3的样本作为负样本,这样也是SVM困难样本挖掘的方法。RCNN使用的是AlexNet,由于CNN的参数量巨大,训练CNN需要大量的样本,此前的方法是大家先用无监督的预训练初始化CNN的参数,然后再在样本集上使用监督的训练方法。但是训练CNN的样本量还是不能少的,...

2022-08-10 21:00:59 85

原创 python os.path.abspath()与os.path.realpath()区别

下面测试需 import os。python os.path.abspath()与os.path.realpath()区别

2022-08-03 21:29:46 451

原创 从卷积的角度看图像滤波器

图像滤波器可以理解为卷积操作的图像解释,平移、旋转、尺度变换、滤波、增强等等,都可以用卷积实现。 均值滤波,顾名思义就是窗口内取均值代替原来的值。用卷积模板来表示如下: 图像中的每个点,取以自己为中心的八邻域的均值作为滤波后的值。用数学表达,f 为 m*n 大小的图像,g 为 k * l 大小的卷积核,如下: 图像与一个只有中心点为 1,其它为 0 的卷积进行卷积操作,结果为自身(边界处理上与原图存在不一致)。 平移,如向右平移,卷积核右边为1,其它为

2022-07-09 20:01:59 137

原创 yolov3 完整讲解-从数据编码角度介绍

对yolo系列文章的发展做个总结。神经网络训练模型的根本就是真值与预测值比较,落实到不同任务最根本的区别的就是对真值的编码。理解深度学习的关键是明白真实值如何编码,下面从这个角度介绍。 深度学习最早用来解决分类问题,对于一个10分类任务,将类别编码为 one-hot 形式。 对于一个分类问题,我们希望输入一张图,输出类别。以四分类的行人、自行车、摩托车、小汽车为例,图像为数字矩阵,所以我们很容易想到对四类别分别用四个数字描述。只管的描述:1、行人;2、自行车;3、摩托车;4、小汽

2022-07-09 19:49:23 878 1

原创 pycharm 调试方式

右键,以debug方式运行: 断点: 1、程序继续执行; 2、关闭当前程序; 3、显示所有断点; 4、让所有断点失效。调试: 1、执行下一步,不进入函数体; 2、执行下一步,进入函数体; 3、跳出函数体; 4、运行到光标处。...

2022-07-09 08:10:34 326

原创 opencv最小外接矩形

经常需要用到opencv二值化、轮廓线检测、求外接矩形、最小外接矩形、矩形的四个点坐标等等,并显示。这里整理下: 阈值的作用是根据设定的值处理图像的灰度值,比如灰度大于某个数值像素点保留。通过阈值以及有关算法可以实现从图像中抓取特定的图形,比如去除背景等。cv2中的阈值相关函数有:普通阈值函数threshold,自适应阈值函数adaptivthreshold。 函数定义:retval, dst = cv2.threshold(src, thresh, maxval, type[,

2022-07-07 20:57:00 2528

原创 点到直线的距离直线的交点及夹角

P到直线AB的距离。2、直线的交点 利用点斜式表达直线,然后求解两条直线组成的方程组。 解得:3、直线的夹角 已知直线 l1:y=k1x+b1,l2:y=k2x+b2,求这两条直线的夹角。结论:  l1 到 l2 的转向角为 θ,则 tanθ=(k2- k1)/(1+ k1*k2)  l1 与 l2 的夹角为 θ,则 tanθ=∣(k2- k1)/(1+ k1*k2)∣  注意:两直线的夹角指的是两直线所成的小于90°的锐角,显然夹角公式中的“角

2022-07-04 23:02:11 251

原创 opencv 判断点在多边形内外

基于Python 和 OpenCV 画出多边形,以及判断某个点是不是在多边形内。 函数定义:cv2.pointPolygonTest(contour, pt, measureDist) 函数功能:找到图像里的点和轮廓之间的最短距离. 它返回的距离当点在轮廓外的时候是负值,当点在轮廓内是正值,如果在轮廓上是0。 其中,contour 为轮廓多边形;pt 为坐标点;measureDist, 若为True,是找带符号的距离;若为False,会找点是否在内,外,或轮廓上(相

2022-07-04 23:00:24 1601

原创 VMware安装Ubuntu卡在installing open-vm-tools

最近VMware安装Ubuntu卡在installing open-vm-tools。查找安装方式: VMware安装Ubuntu卡在installing open-vm-tools,要解决这个问题,需要做如下步骤: 1)创建完成后把“创建后开启此虚拟机”的对勾去掉,先不要安装系统; 2)在设置的ubuntu安装目录中先把虚拟光驱加载的自动安装文件找到autoinst.iso,然后删除。 然后就可以安装ubuntu系统了,这样可以自定义安装了。但是安装

2022-06-21 22:31:21 1620

原创 SLAM14讲中Sophus包的安装问题

SLAM14中,useSophus.cpp工程编译中报错: 报错原因:makelist中找不到Sophus头文件。我们分两步处理: 进入源码目录,编译,安装。2、在CMakeLists.txt文件中添加Sophus_INCLUDE_DIRS变量 观看错误信息,其实就是找不到Sophus库和头文件的内容: 比如,我的是这样的: 然后再将你的执行文件链接上Sophus库文件。这样的话,上述编译错误应该就可以消失了。...

2022-06-21 22:29:10 283

原创 Eigen 常用操作

Eigen是一个高层次的C ++库,支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。本例程包含头文件:1、数据结构 Eigen 数据结构如下,单精度与双精度转换把 d 换为 f。 旋转矩阵(3*3):Eigen::Matrix3d。 旋转向量(3*1):Eigen::AngleAxisd。 欧拉角(3*1):Eigen::Vector3d。 四元素(4*1):Eigen::Quaterniond。 欧式变换矩

2022-06-20 23:01:57 608

原创 win10上vs2017配置Eigen3开发环境

Eigen是一个高层次的C ++库,支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。是一个由头文件组成的库,可以不用编译,直接下载,加载到本地项目。 官网下载地址:http://eigen.tuxfamily.org/index.php?title=Main_Page,目前最新版本为3.4.0,我们就下载对应的zip即可。 解压后,目录里面有很多文件,其中包含Eigen库。 step1、新建项目,名为test_eigen。 step2、平台选为D

2022-06-20 22:55:00 380

test_set.zip

k-means测试点集数据。

2021-07-06

TownCentreXVID.zip

目标跟踪视频:TownCentreXVID.avi及标记文件TownCentre-groundtruth.top。现有的链接失效了,上传一份。

2020-09-24

wps_fonts.zip

ubuntu下wps缺少字体。解决ubuntu下安装wps包后,文档可以用,但ppt打开提示缺少字体后自动退出。

2020-07-09

detectron2 cuda编译源文件适合windows系统

detectron2 cuda编译源文件,适合windows系统。新版的更新后被作者改坏了,在windows上无法完成编译,导致不能运行。

2020-06-22

win7主题文件资源文件及UniversalThemePatcher工具.zip

win7系统的原始主题文件dll,包括themeservice.dll、themeservice.mui、themeui.dll、themeui.mui、uxtheme.dll、uxtheme.mui文件。UniversalThemePatcher工具下载好,方便使用。

2020-05-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除