arcoshx怎么用计算机算,双曲函数

在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数sinh和双曲余弦函数cosh,从它们可以导出双曲正切函数tanh等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。[1]

双曲函数的定义域是区间,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。

中文名

双曲函数

外文名

Hyperbolic function领    域

数学函数论

应    用

应用学科

双曲函数定义

编辑

语音

双曲函数(hyperbolic function)可借助指数函数定义[1]

双曲正弦:f9713297386a8c7ecad7ef4756ac7c88.svg

双曲余弦:1ab32a847ca3ef099994a95a61246cfa.svg

双曲正切:ed09efd65c831e0646be20e8d1b43747.svg

双曲余切:1d7c9d64d08df5634221fdbb2620097f.svg

双曲正割:4c434d05e3eb13e45899c49bf4bce747.svg

双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。

如同点 (cost,sint) 定义一个圆,点 (cosh t,sinh t) 定义了右半直角双曲线x^2- y^2= 1。这基于了很容易验证的恒等式

c735b6a83d5f82dde264ee5b3a36378b.svg

参数 t 不是圆角而是双曲角,它表示在 x 轴和连接原点和双曲线上的点 (cosh t,sinh t) 的直线之间的面积的两倍。

函数 cosh x 是关于 y 轴对称的偶函数。函数 sinh x 是奇函数,就是说 -sinh x = sinh (-x) 且 sinh 0 = 0。

双曲函数函数性质

编辑

语音

y=sinh x,定义域:R,值域:R,奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,函数图像关于原点对称。[1]

y=cosh x,定义域:R,值域:[1,+∞),偶函数,函数图像是悬链线,最低点是(0,1),在Ⅰ象限部分是严格单调递增曲线,函数图像关于y轴对称。

y=tanh x,定义域:R,值域:(-1,1),奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,其图像被限制在两水平渐近线y=1和y=-1之间。

y=coth x,定义域:{x|x≠0},值域:{y||y|>1},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为y=1和y=-1。

y=sech x,定义域:R,值域:(0,1],偶函数,最高点是(0,1),函数在(0,+∞)严格单调递减,(-∞,0)严格单调递增。x轴是其渐近线。

y=csch x,定义域:{x|x≠0},值域:{y|y≠0},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为x轴。

双曲函数与三角函数关系

编辑

语音

双曲函数与三角函数有如下的关系:[2]

86bbbec5a58980ea2521f8f3f16605c7.svg

bb18e10617fd60c66f32a747c0b05447.svg

ea1e3c00ec741058707dd83ab49ef67f.svg

fda2258f3c0fcce147c0d822cf9a2725.svg

0bc8f0f9a7bcb87cf7dea0b0eaf8e9ab.svg

db735f7a860a832cd6eebff6424dbe6c.svg

双曲函数恒等式

编辑

语音

与双曲函数有关的恒等式如下:[1]

34660c8a2c14d7dab670d4bf33d47969.svg

6efbec3afe52bf33da983c99c2eaf5e9.svg

948ba234436f4912ee240ca83505edc8.svg

b761125364c7085e62a5fa2dcf6f6210.svg

双曲函数加法公式

8942fc6998d60b077061ec08d2ba5573.svg

55c672b8e4658d1afd8934dd26c66aa9.svg

6e85fca2126ca9612a1c4207c42d2e48.svg

双曲函数减法公式

14db6f54af9680c0d6086808c6410a9b.svg

b8702db1cda291aa0d45032500357e21.svg

6b9b7123bfd10a820ad55b3e085cc5e3.svg

双曲函数二倍角公式

4dc1a0ab5e1d6fb97cd7a5151f17e438.svg

f0a0dd6eef6ce6a59b36308ab4b83773.svg

4ad6f92bcd0832a598eaa4a97b12c79b.svg

双曲函数三倍角公式

1d7f4d29a2a7757358123dacd15303ce.svg

7179442856ad4f098d567fc8f12c1cca.svg

双曲函数半角公式

f98ebd8c1ecb6f2141f3d22f0823dc2f.svg ,正负由x/2决定。

270472932afa1b53c8d53f7dcf0946cc.svg

5d1a1620887c1529e67fe767293595c8.svg

双曲函数导数

编辑

语音

57662f6eef295c090978b4443e6cb559.svg

eabcfb50eb818aebcc8de466638b59da.svg

4be317f51a2d4347da6ee19625cf45de.svg

0683c9c32bb7d6874c5aa93eaab22f13.svg

cf1e9779263dccb9b7f9629463180bc3.svg

af9de10410fdd4020e7d1847aeadcb3f.svg

双曲函数不定积分

编辑

语音

05c9773171012aa3823e897408cb8377.svg

9767b0b15524064b15fe42aa1d0b4f58.svg

8f8b26cfa91ea7cc404fcec20887aa1f.svg

fa8a76f5176d45e5c0f66022f07b1364.svg

61f3c23f76af43b6914846dc37eb0720.svg

d4dd9d6ac7d1e6a79bf755df94b6b0ef.svg

双曲函数级数表示

编辑

语音

ba0ca57649da8bd7a78926ff80a7b5f6.svg

20ace133980e757ccd593b4bc7246798.svg

其他级数可根据双曲函数与三角函数的关系,用ix代替x(有些函数需要再乘以i或-i)即可。

双曲函数实际应用

编辑

语音

双曲函数并非单纯是数学家头脑中的抽象,在物理学众多领域可找到丰富的实际应用实例。[3]

双曲函数阻力落体

在空气中由静止开始下落的小石块既受重力的作用又受到阻力的作用。设小石块的质量为m,速度为v,重力加速度为g,所受空气阻力假定与v2正比,阻尼系数为μ。设初始时刻小石块静止。求其小石块运动速度与时间的关系。[3]

解:

小石块遵循的运动方程为

mdv/dt=mg―747d61a9ed38fb6c3dbc5dcfdcc961c4.svg (1)

这是Riccati方程,它可以精确求解。

依标准变换方式,设

v=(m/μ)/(z′/z) (2)

代入(1)式,再作化简,有

z'' ―(gμ /m)z=0 (3)

(3)式的通解是

z=C1exp(√gμ /m t)+ C2exp(-√gμ /m t)(4)

其中,C1和C2是任意常数。

由于小石块在初始时刻是静止的,初始条件为

v(0)=0 (5)

这等价于

z′(0)=0 (6)

因此,容易定出

C2=C1 (7)

将(7)式代入(4)式,再将(4)式代入(2)式,就可得

满足初始条件的解

v=√mg/μ tanh(√μg/m t) (8)

我们可以作一下定性的分析。小石块初始时刻静止。因此,随着时间增加,开始时小石块速度较小,小石块所受的阻力影响较小,此时,小石块与不受阻力的自由落体运动情况相类似,小石块加速度几乎是常数。起始段t和v的关系是直线。当小石块速度很大时,重力相对于阻力来说可以忽略,阻力快速增加到很大的数值,导致小石块的速度几乎不再增加。此时,小石块加速度接近零,v几乎不随时间而变化。一段时间后,v相不多是一平行于t轴的直线。

双曲函数导线电容

真空中两条圆柱形无穷长平行直导线,横截面的半径分别为R1和R2,中心线相距为d(d >R1+R2)。试求它们间单位长度的电容。[3]

解:设这两条导线都带电,单位长度的电荷量分别是为λ和―λ。

我们可以用电像法精确求解。电像法的思路是:

由于在静电平衡情况时,导线是等势体,因而我们可设想用偶极线来取代这两条圆柱形带电导线,适当地选择偶极线的位置,使它们所产生的两个等势面恰好与原来两导线的表面重合。这样就满足了边界条件。这里采用的偶极线是两条无穷长的均匀带电平行直线,它们单位长度的电荷量也分别为λ和―λ。这偶极线便是原来两带电导线的电像。于是就可以计算电势,从而求出电容来。为此先求偶极线的等势面。

以偶极线所在的平面为z-x平面,取笛卡儿坐标系,使偶极线对称地处在z轴的两侧,它们到z轴的距离都是a。这偶极线所产生的电势便为

φ=φ1+φ2

=(λ/2πε0)In(r1′ / r1)+(―λ/2πε0)In(r2′ / r2)

=(λ/2πε0)In[(r2 / r1)(r1′/ r2′)] (1)

式中r1′和r2′分别是偶极线λ和―λ到某个电势参考点的距离。为方便起见,我们取z轴上的电势为零,这样,r1′=r2′= a,于是,(1)式便化为

φ=(λ/2πε0)In(r2 / r1) (2)

由于对称性,平行于z轴的任何一条直线都是偶极线的等势线。所以,我们只须考虑z-y平面内任意一点P(z,y)的电势即可。于是

φ=(λ/4πε0)In{[(x2+a2)+y2] /[(x2―a2)+y2] } (3)

故偶极线的等势面方程便为

[(x2+a2)+y2] /[(x2―a2)+y2]=k2 (4)

式中k2 =e4πε0φ/λ (5)

令c=[(k2+1)/(k2―1)]a (6)

则(4)式可化为

(x―c)2+y2=[4k2/(k2―1)2]a 2 (7)

这表明,偶极线的等势面都是轴线平行于z轴的圆柱面,它们的轴线都在z轴上z=c处,其横截面的半径为

R=∣2k/(k2―1) ∣a (8)

这个结果启示,我们可以找到偶极线的两个等势面,使它们分别与原来两导线的表面重合。这只要下列等式成立就可以了:

a1= ∣c1∣=[(k12+1)/(k12―1)]a (9)

R1=∣2k1/(k12―1) ∣a (10)

a2= ∣c2∣=[(k22+1)/(k22―1)]a (11)

R2=∣2k2/(k22―1) ∣a (12)

d=a1+a2 (13)

由(9)至(13)式得

a12―R12=a2= a22―R22 (14)

原来两导线表面的方程是

R1:(x―a1)2+y2= R12 (15)

R2:(x+a2)2+y2= R22 (16)

利用(14)式,可以把(15)和(16)式分别化为

x2+y2+ a2= 2a1 x (17)

x2+y2+ a2= ―2a2 x (18)

利用(17)和(18)两式,由⒅式得出,半径为R1和R2的两导线的电势分别为

φ1=(λ/4πε0)In[(a1+a)/ (a1―a)] (19)

φ2=―(λ/4πε0)In[(a2+a)/ (a2―a)] (20)

于是两导线的电势差便为

U=φ1+φ2=(λ/2πε0)In[(a1+a)(a2―a)/ R1R2] (21)

用已知的量消去未知数,可以得出

U=(λ/2πε0)In[(d2―R12―R2)/ 2R1R2+√[(d2―R12―R2)/ 2R1R2]2―1] (22)

最后得出原来两导线为l一段的电容为

C=Q/U=2πε0l/ In[(d2―R12―R22)/ 2R1R2+√[(d2―R12―R22)/ 2R1R2]2―1] (23)

单位长度的电容为

c=2πε0/ In[(d2 ― R12 ―R22) / 2R1R2+√ [(d2―R12―R22) / 2R1R2 ] 2―1] (24)

利用反两曲余弦关系式

archx= In[(x+√x2―1)] (25)

对本题的精确解表示作简洁表示

c=2πε0/ arch[(d2―R12―R22)/ 2R1R2] (26)

最后一式可以在一般手册上查到。

双曲函数粒子运动

一电荷量为q、静质量为m0的粒子从原点出发,在一均匀电场E中运动,E=Eez沿z轴方向,粒子的初速度沿y轴方向,试证明此粒子的轨迹为[4]

x=(W0/qE)[cosh(qEy/p0c)―1] (1)

式中p0是粒子出发时动量的值,W0是它出发时的能量。

解:

带有电荷量q的粒子在电磁场E和B中的相对论性的运动方程为

dp/dt=q(E+v×B) (2)

式中v是粒子的速度,p是粒子的动量

p=mv=mv0/√1-v2/c2 (3)

本题运动方程的分量表示式为

dpx=qE

dpy=0

dpz=0 (4)

解之,有

px =qEt+C1

py = C2

pz = C3 (5)

代入t=0时初始条件

px(0)=0

py(0)= p0

pz(0)= 0 (6)

定出积分常数后,可知

px=qEt

py= p0

pz= 0 (7)

粒子的能量为

W=mc2

=√p2c2+m02c4

=√(px2+ py2+ pz2)c2+m02c4

=√q2E2 c2t2+W02 (8)

因dx/dt=qEt/m=qEc2t/√q2E2 c2t2+W02 (9)

积分得

x=∫[qEc2t/√q2E2 c2t2+W02 ]dt

= [√q2E2 c2t2+W02 -W02]/qE (10)

又由(7)式得

dy/dt=p0/m=p0c2/√q2E2 c2t2+W02 (11)

积分得

y=∫[p0c2 /√q2E2 c2t2+W02 ]dt

=(p0c /qE)arsh(qEct/W0) (12)

或 (qEct/W0)= sinh (qEy/ p0c) (13)

在(51)式和(54)式中消去t,有

x=(W0/qE)[√1+ sinh2(qEy/ p0c)-1 ] (14)

利用恒等变换公式

cosh2x―sinh2x=1 (15)

(55)式可以写成

x=(W0/qE)[cosh2(qEy/ p0c)-1 ] (16)

(16)式是一种悬链线。

讨论:

因双曲余弦泰勒级数展开式是

cosh(x)=1+x2/2!+x4/4!+x6/6!+…… (17)

当v/c →0时,保留前2项,得

x=(qE/2m v02)y2 (18)

(18)式是抛物线轨迹。《普通物理学》教材用经典牛顿力学求解,普遍会给有这个结果。这表示,非相对论确是相对论在v/c →0时的极限。或者说,(18)式成立的条件是v/c<<1,这也是牛顿力学的适用范围。

双曲函数非线性方程

如著名的KdV(Korteweg-de Vries)方程的形式为[4]

ux+uux+βuxxx=0 (1)

它是非线性的频散方程,其中β是频散系数。用双曲函数展开法求其某些特殊精确解。

解:

考虑其行波解

u(x,t)=φ(ξ) (2)

其中,

ξ=kx-ωt+ξ0 (3)

-ωφξ+kφφξ+k3βφξξξ=0 (4)

f=1/(coshξ+r),g=sinhξ/(coshξ+r) (5)

尝试

φ=a0+a1f+a2g (6)

注意存在关系式

df/dξ=-fg

dg/dξ=1-g2-rg

g2=1-2rf+(r2-1)f2 (7)

将(7)式代入(5)式,并在(6)式的帮助下使所得方程中各项只含有f和g的幂次项,且g的幂次项不大于1。合并f和g的同次幂项并取其系数为零,就得到方程(4)对应的非线性代数方程组

-6βk3b1(r2-1)2=0

-6βk3a1(r2-1)=0

-2kb1(r2-1)(-6βk2r+ a1)=0

-k(-6βk2r a1+ a12-b12+ b12r2)=0

b1(4βk3+ka0-ka0r2+3ka1 r-7βk3 r2+ cr2-c)=0

ωa1+kb12 r-βk3 a1-ka0a1=0

-b1(ka1+ωr-βk3r-ka0r)=0 (8)

用计算机代数系统Maple对此超定方程组进行运算,可求得k≠0,ω≠0时的一个非平凡精确解

φ=(ω-βk3)/k+6βk2/(coshξ+1)=0 (9)

其中,k、ω、ξ0为任意常数。

(9)式是孤波解。

从以上的讨论中可知,无论是在经典或近代的物理学内容中,还是在正在发展中的物理学内容中,双曲函数起着不可或缺的重要作用。

双曲函数悬链线

形如y=a cosh(x/a)(a为常数)的函数的图象又叫悬链线,可以由柔软的绳子得到,有点象抛物线,但其实两者差距很大.据说莱布尼兹(Leibniz)于1690年最先解出悬链线方程,惠更斯(Huygens)和伯努利兄弟(Jacob Bernoulli,Johann Bernoulli)随其后.惠更斯在1691年把悬链线命名为catenary. 悬链线与抛物线有这样的关系:悬链线是直线上滚动的抛物线的焦点的运动轨迹.悬链线的顶点的渐开线是曳物线(tractrix).这条曳物线的渐进线称为悬链线的准线,悬链线绕准线旋转形成的曲面叫做悬链面。[3]

双曲函数数学证明

设最低点A处受水平向左的拉力H,右悬挂点处表示为C点,在AC弧线区段任意取一段设为B点,则B受一个斜向上的拉力T,设T和水平方向夹角为θ,绳子的质量为m。[3]

受力分析有: Tsinθ=mg  Tcosθ=H  tanθ=dy/dx=mg/H  mg=ρs

其中s是右段AB绳子的长度,ρ是绳子线重量密度,代入得微分方程dy/dx=ρs/H

利用弧长公式ds=√(1+dy^2/dx^2)*dx;所以s=∫√(1+dy^2/dx^2)*dx

所以把s带入微分方程得dy/dx=ρ∫√(1+dy^2/dx^2)*dx/H;....(1)

对于(1)设p=dy/dx微分处理  得 p'=ρ/H*√(1+p^2)......(2)

p'=dp/dx 对(2)分离常量求积分  ∫dp/√(1+p^2)=∫ρ/H*dx  得ln[p+√(1+p^2)]=ρx/H+C,即asinhp(反双曲正弦)=ρx/H+C

当x=0时,dy/dx=p=0带入得C=0

整理得asinhp=ρx/H

另详解:(ln[p+√(1+p^2)]=ρx/H)

p=sh(ρx/H) (1+p^2=e^(2ρx/H)-2pe^(ρx/H)+p^2)

(p=[e^(ρx/H)-e^(-ρx/H)]/2=dy/dx)

y=ch (ρx/H)* H / ρ (y=H/(2ρ)*[e^(ρx/H)+e^(-ρx/H)])

令a=H/ρ:y=a*cosh (x/a)  (y=a[e^(x/a)+e^(-x/a)]/⑵= a*cosh(x/a))。

词条图册

更多图册

参考资料

1.

杨波尔斯基, А.Р.. 双曲函数[M]. 中央民族学院出版社, 1987.

2.

文泽. 双曲函数与三角函数间的关系[J]. 中等数学, 1985(3).

3.

林旋英、张之翔.电动力学题解:科学出版社,1999

4.

吕克璞, 石玉仁, 段文山,等. KdV-Burgers方程的孤波解[J]. 物理学报, 2001, 50(11):2074-2076.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值