计算机学报 杂志社,计算机学报

Abstract &

BackgroundAbstract Basing on a new scheme—random evolution plus feedback, which is reported to well represent the nature of biological evolution process, this paper proposes chaotic parallel genetic algorithm with feedback mechanism. In this new algorithm, chaotic mapping is embedded for maintaining a good diversity of population; and Baldwin effect based posterior reinforcement learning, which can successfully deal with the feedback information from the evolutionary system, is integrated to speed up the evolution along the right direction. The performance of this new algorithm was demonstrated on a well-known benchmark constrained non-linear problem and a benchmark problem of parameter estimation in finance. Experimental results and comparisons show that this new genetic algorithm is effective, universal and robust.

keywords genetic algorithm; chaos mapping; non-linear programming; Perato-dominant; Baldwin effect

background It is widely reported that standard genetic algorithm (SGA) confronts such problems as slow convergence and prematurity (crowding). Difficulty lies in that it is state-of-the-art to well balance the population diversity and selective pressure simultaneously. Lots of researches attempt to deal with these problems by enhancing the structure of individual or by designing complicated strategies for evolutionary operators. However, conventional improvements did not nearly solve these problems. Several reasons can explain it. Firstly, diversities of an initial population are far from actualized. Secondly, conventional initialization methods such as uniform and random approach can bring problems, too. Even if they can guarantee that the initial population is evenly distributed in search space, they cannot guarantee the qualities of initial population are also uniformly arranged. Thirdly, the diversity of population cannot be maintained under selective pressure. Finally and perhaps the most importantly, conventional GAs and their improvements completely abandon the individuals’ experiences during their lifetime, which causes no necessary connections between the current and next generations except for some controlling parameters. However, many experiments show that an improved GA with resource to domain-specific heuristics information always has a good performance in evolution. In the real biosystems, those who can successfully deal with the feedback information from evolution always survive better and keep evolving from low to higher classes.

This paper contributes to solving the problems of slow convergence and prematurity for GAs. The authors take advantages of chaotic system to enhance the diversity of population during evolution process and at the same time embed the reinforcement learning basing on heuristics information from evolutionary system into GA to speed up the convergence along the right direction.

Recently, they have published several papers try to solve the dilemma of GA. Paper titled "Inconsistent self-adaptive genetic algorithm and its application" appears in Systems Engineering(2002), introduced an inconsistent self-adaptive strategy into the operators of GA. Another paper titled "Baldwin effect based self-adaptive generalized genetic algorithm and its application" which appeared in the Proceedings of The Eighth International Conference on Control Automation, Robotics Vision (2004), proposed the Baldwin effect based reinforcement learning operator and introduced it into GA. Paper titled "Chaotic parallel genetic algorithm with feedback mechanism and its application in complex constrained problem" in Proceedings of IEEE Conference on Cybernetics and Intelligent Systems (2004), tried to combine both chaotic mapping and Baldwin effect based reinforcement learning operator into GA. However, the effect was not ideal as expected. In this paper, basing on the authors’ previous works they combine advantages of the inconsistent self-adaptive strategy, chaos system and the posterior reinforcement learning into genetic algorithm to build a novel Chaotic Parallel Genetic Algorithm with Feedback (CPGAF). Numerical experimental results show that the new genetic algorithm is effective, universal and robust.

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值