自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

VIEO

TRY AND TEST

  • 博客(439)
  • 资源 (3)
  • 收藏
  • 关注

原创 Few-Shot 小样本学习 论文检索

ReferencesDiscriminative k-shot learning using probabilistic models. arXiv preprintarXiv:1706.00326 (2017) A closer look at few-shot classification. In: ICLR (2019) 【已读】 Diversity with cooperation: Ensemble methods for few-shot classification. In: ICCV

2021-01-04 16:15:18 169

转载 如何做research和survey

元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019最近实验室项目有些多,小boss给了很多survey的任务,还要加入到一个项目里面去。理工科的孩子做research真心苦逼啊。硕士生的三大法宝:Eng...

2019-09-04 14:59:54 1331 2

原创 改进三元组损失

三元组损失tripletloss改进三元组损失

2021-04-27 15:52:31 46

原创 回归模型

参考:https://blog.csdn.net/red_stone1/article/details/81122926线性回归和逻辑回归通常是人们学习预测模型的第一个算法。由于这二者的知名度很大,许多分析人员以为它们就是回归的唯一形式了。而了解更多的学者会知道它们是所有回归模型的主要两种形式。事实是有很多种回归形式,每种回归都有其特定的适用场合。在这篇文章中,我将以简单的形式介绍 7 中最常见的回归模型。通过这篇文章,我希望能够帮助大家对回归有更广泛和全面的认识,而不是仅仅知道使用线性回归和逻辑回

2021-04-26 09:56:38 18

原创 detectron2安装

文档:https://detectron2.readthedocs.io/tutorials/install.htmlpytordch1.6==cuda10.1安装命令python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html

2021-04-22 15:55:04 17

转载 CMakeLists.txt 编译控制文件

参考:https://blog.csdn.net/afei__/article/details/81201039一、Cmake 简介cmake 是一个跨平台、开源的构建系统。它是一个集软件构建、测试、打包于一身的软件。它使用与平台和编译器独立的配置文件来对软件编译过程进行控制。二、常用命令1. 指定 cmake 的最小版本cmake_minimum_required(VERSION 3.4.1)这行命令是可选的,我们可以不写这句话,但在有些情况下,如果 CMakeLists.tx..

2021-04-21 09:31:27 49

转载 python matplotlib 指数函数拟合

import mathimport matplotlibimport matplotimport numpy as npimport matplotlib.pyplot as pltplt.rcParams['font.family'] = ['sans-serif']plt.rcParams['font.sans-serif'] = ['SimHei']# 为了显示中文def HH(m,n): """ 问题一,输入m,n参数,返回一个(m+1)*(n+1)的矩阵 .

2021-04-19 22:24:25 32

转载 小样本学习调研2021.3 多模态小样本学习/大规模小样本学习

https://blog.csdn.net/qq_21157073/article/details/110953580Large-Scale Few-Shot Learning via Multi-Modal Knowledge Discovery(解决大类别下的小样本学习)关键点:视觉特征分块;语义弱监督的引入在视觉空间中,将图片分为三种,原始图片+前景图片+背景图片。其中前景背景是通过显著性检测得到。分别正对原始图片,前景图片,背景图片输入到对应网络中提取特征,将三个得到的特征拼接为.

2021-03-12 09:19:44 271

原创 Graph Few-shot Learning via Knowledge Transfer

一:Graph Few-shot Learning via Knowledge Transfer - Yuan Z的文章 - 知乎 https://zhuanlan.zhihu.com/p/163325483最近看到了arxiv上的一篇论文Graph Few-shot Learning via Knowledge Transfer,今天准备简单的总结一下。 这一篇论文本质上就是Prototypical Network的一个改进。他的改进主要集中在以下三个方面:在构造每个类的原型向量的时候,引入了P.

2021-03-11 21:39:53 32

原创 Few-Shot Learning With Graph Neural Networks

https://zhuanlan.zhihu.com/p/67745489在 Few-Shot Learning 中,每个类别的训练样本数据较少,如果直接训练一个多分类模型,会由于每个类别的样本较少而无法训练充分。而 GNN 的一个优点在于可以通过节点之间的连接来做信息扩散,如果把每个样本视作图中一个节点,节点之间的边是它们的某种距离度量,那么,就可以把已有label的样本的 label 信息根据节点之间相似性的强弱,有选择的扩散到与之最相似的,需要预测的样本上。这样,新样本在预测的时候,可以利用到各个

2021-03-11 21:06:29 33 1

转载 对小样本学习的思考

作者:ICOZ链接:https://www.zhihu.com/question/439865186/answer/1747593000来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。如果你只是focus在小样本分类的那几个benchmark上,那的确看起来很局限。事实上小样本学习的应用可以是很广泛的, 其中的研究思路也可以对其他领域产生启发。这两个方面展开说可以写很多。随便举几个例子,很多相关的问题都可以看做小样本学习,比如图像检索,人脸识别验证,行人重识别.

2021-03-11 19:53:21 88

转载 图小样本学习方法调研

基于图网络的few-shot detection论文总结(上) - Kristina王的文章 - 知乎 https://zhuanlan.zhihu.com/p/217431724这几天读了一些关于用图网络对少样本进行目标检测的论文,发现今年顶会接收的关于此方向的文章有点“换汤不换药”的味道。1、《Knowledge Graph Transfer Network for Few-Shot Recognition》AAAI 2020是一篇关于知识图谱迁移网络小样本识别的论文。Abstract

2021-03-11 17:16:21 153

转载 NIPS历年论文 NIPS2020论文集

NIPS(Neur IPS)2020论文列表及地址https://proceedings.neurips.cc/paper/2020(2020年论文)https://proceedings.neurips.cc//(1987-现在所有年的论文)nips官网网址:https://neurips.cc/国内比较好的一个网站:https://www.aminer.cn/conf/neurips2020会议安排:https://nips.cc/Conferences/2020/Schedule..

2021-03-04 20:16:39 1020 1

转载 python散点图plt.scatter()

https://blog.csdn.net/m0_37393514/article/details/81298503总是去别人的博客里面找关于scatter散点图相关用法,想想还是自己写一个吧,下次看自己的就行。函数的原型:matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, vert

2021-03-02 15:54:21 141

转载 python求解拉普拉斯矩阵

首先,我们说一下流形学习;接着,我们重点介绍拉普拉斯特征映射算法;最后,本文将给出拉普拉斯特征特征映射算法代码。流形学习流形学习是一种非线性降维方法,能够从高维数据中发现低维流形结构,得到高维和低维之间的映射关系,从而实现数据的维数约简。**为什么要实现特征约简?**因为高维的数据存在数据量大并且高维数据输入到网络模型中训练难度较大,耗费时间长。流形学习展示图,其中包括Isomap(等距映射算法),LLP(局部保持投影),LE(拉普拉斯特征映射)等拉普拉斯特征映射原理拉普拉斯特征映射是一种

2021-03-02 15:11:15 447

转载 numpy.linalg.eig() 计算矩阵特征向量

在PCA中有遇到,在这里记录一下计算矩阵的特征值个特征向量,下面给出几个示例代码:在使用前需要单独import一下>>> from numpy import linalg as LA>>> w, v = LA.eig(np.diag((1, 2, 3)))>>> w; varray([ 1., 2., 3.])array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., ...

2021-03-02 15:00:33 141

转载 解决Anaconda pytorch无法下载或下载缓慢

第一步切换Anaconda下载源。# 添加清华源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/conda config --set show_channel_urls yes#添加pytorch源co

2021-03-01 18:54:38 138

原创 pytorch计算矩阵的迹

x=torch.rand(3,3)print(x)print(x.trace())#求矩阵的迹(对角线元素之和);print(x.diag())#对角线元素之和;print(x.inverse())#求矩阵的逆;print(x.triu())#求矩阵的上三角print(x.tril())#求矩阵的下三角;print(x.t())#矩阵的转置;y=torch.rand(3,1)print(x.mm(y))#矩阵乘法;...

2021-03-01 17:12:40 274

原创 论文图表添加索引、书签

1.在文章文字中添加书签2.通过添加超链接,链接到本文的书签处

2021-03-01 17:11:21 144

原创 E: dpkg was interrupted, you must manually run ‘dpkg –configure -a’ to correct the problem. 解决办法

E: dpkg was interrupted, you must manually run ‘dpkg –configure -a’ to correct the problem.解决办法:sudo dpkg --configure -a # [多尝试几次]sudo apt-get updatesudo apt-get upgradesudo apt-get -f install

2021-02-28 13:43:11 32

转载 随机梯度下降详解

 在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。1. 梯度    在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x,∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0,∂f/..

2021-02-24 12:20:38 311

原创 流行学习与拉普拉斯变换的推导

参考:拉普拉斯矩阵参考:流行学习

2021-01-11 21:03:19 292

转载 流形学习(Manifold Learning)以及推导

流形学习(Manifold Learning) 前言 流行学习简介 主要的代表方法 1) Isomap (等距映射) Isomap算法步骤: 2) LLE(Locally Linear Embedding) 局部线性嵌入 LLE基本思想: LLE算法步骤: Isomap 与LLE的比较: 3) LE (Laplacian Eigenmaps) 拉普拉斯特征映射 谱图理论: LE基本思想: LE算法步骤:

2021-01-11 19:59:20 294

转载 矩阵迹的几何意义是什么?

迹的几何意义是什么? - 马同学的回答 - 知乎 https://www.zhihu.com/question/20533117/answer/255818053前置阅读:如何理解矩阵乘法? 如何理解相似矩阵?线性代数中,把方阵的对角线之和称为“迹”

2021-01-11 16:08:09 299

转载 图梯度、散度、拉普拉斯算子

graph上定义的graident、divergence、Laplace operator或Laplacian。graident定义:边的梯度=(边的终点-边的起点)/边的权重标题的梯度=(4-2)/1=2,的梯度=(7-2)/1=5...引入关联矩阵,起点为-1,终点为1,则该graph的关联矩阵为,属性矩阵,那么,图的梯度为,发现和图上梯度的定义一样。故,。divergence和Laplacian同理,图上的散度可以定义为:,流入该节点的通量之和,当h为梯度时,.

2021-01-08 10:39:50 187

转载 拉普拉斯矩阵与拉普拉斯算子的关系

https://zhuanlan.zhihu.com/p/85287578

2021-01-04 17:14:07 165

原创 正则化 || 流行正则化方法

Manifold regularization: A geometric framework for learning from labeled and unlabeled examplesBetween-class learning for image classification-CVPR2018Manifold mixup: Better representations by interpolating hidden states-ICML2019mixup: Beyond empir..

2021-01-04 16:15:56 195

原创 转导学习 transductive learning

转导推理区别于归纳推理(Inductive Inference)从特殊到一般,再从一般到特殊的学习方式,转导推理(Tranductive Inference)是一种从特殊到特殊的统计学习(或分类)方法。在预测样本的类别时,转导推理试图通过局部的标注训练样本进行判断,这与归纳推理先从训练样本中归纳得到一般模型有着很大差异。特别是当训练样本的数量不足以归纳得到全局一般模型时,转导推理能够利用未标注样本补充标注样本的不足。然而转导推理还有很多问题亟待解决,例如KNN每次预测都要遍历所有测试样本,TSVM的精确

2021-01-04 15:18:51 700 1

转载 Embedding Propagation: Smoother Manifold for Few-Shot Classification ECCV 2020

论文题目 Embedding Propagation: Smoother Manifold for Few-Shot Classification ECCV 20201分钟思维导图(来源)Abstract目前小样本学习(Few-shot Learning,FSL)是非常具有挑战性的,是由于训练集和测试集的分布可能存在不同,产生的分布偏移(distribution shift)会导致较差的泛化性。**流形平滑(Manifold smoothing)**通过扩展决策边界和减少类别表示的噪音(ex

2020-12-31 16:53:33 242

原创 Ubuntu下安装微信(electronic-wechat)

https://blog.csdn.net/u014132947/article/details/80594168https://github.com/geeeeeeeeek/electronic-wechat

2020-12-30 14:47:35 182

原创 /dev/sda2 contains a file system with errors, check forced | initramfs

开机无法进入系统,显示/dev/sda2 contains a file system with errors, check forced.......initramfs待输入框问题原因:系统盘dev/sda2加载错误。解决办法:用fsck命令开始检查、修复(fsck是个很好用了磁盘检测修复命令)输入:fsck -t ext4 /dev/sda2(-t是指定文件系统类型:现在的多半是ext3和ext4,不知道,你就一个一个试!)最后回车后它会问你是否继续,你就一路按y就行了!到最后会它完了之..

2020-11-19 20:21:15 219

转载 Few-shot Learning via Saliency-guided Hallucination of Samples||阅读

小样本学习&元学习经典论文整理||持续更新核心思想  本文提出了一种基于数据增强的小样本学习算法。选择Relation Network作为Baseline,在此基础上,利用显著性目标检测算法,将图像分割成前景与背景,再将不同图片的前景和背景进行拼合,组成更多的合成图像,以此实现数据集的扩充。本文的想法乍看起来很简单,4张图片分成前景和背景共8张图片,然后两两组合就可以得到16张合成图片,但在实现过程中仍有许多细节问题需要考虑,那看一下作者是如何实现其想法的吧。  如上图所示,整个网络分成三

2020-11-19 15:49:51 70

原创 小样本研究论文集 数据集

Few-Shot Classification Leaderboard

2020-10-29 16:37:26 114

原创 双系统 文件或目录被损坏且无法读取

从ubuntu进入win系统,开机画面提示正在修复磁盘J,长久没反应,强制重启进入win后发现无法进入J盘,如上图所示。右键dos命令,管理员方式启动,输入:# 对磁盘j修复chkdsk j: /fC:\Windows\system32>chkdsk j: /f 文件系统的类型是 NTFS。 ..

2020-10-16 19:48:16 137

转载 Word中插入参考文献 自动管理

在Word中插入参考文献的时候,你是否遇到了下面这些令人头大的问题:①想要新添加一个参考文献,但是序号不能自动更新,需要自己一个一个修改,怎么办?②某一个参考文献不想要了,删除后序号还是得一个一个修改,怎么办?③论文某几段需要调整前后顺序,可是这样的话参考文献序号就乱了,怎么办?看完下面的教程,这些问题就都不是事儿了!第一步:插入参考文献第三步:参考文献更改/变动? 将光标放在需要引用参考文献的地方(红色标注代表引用的位置),在Word最上方找到【引用...

2020-10-10 20:45:59 112

转载 linux shell sleep usleep 延时命令 秒 毫秒 微秒

sleep 1 # 表示延迟1秒sleep 1s # 表示延迟1秒sleep 1m # 表示延迟1分sleep 1h # 表示延迟1小时 sleep 1d # 表示延迟一天 参考

2020-09-25 11:33:36 794

原创 TripleLoss要点理解

CNN: 4.4 triplet loss:https://www.bilibili.com/video/av16746756/CNN: 4.4 triplet loss_2:https://www.bilibili.com/video/BV1rx41157SA/?spm_id_from=333.788.videocard.1CNN: 4.4 triplet loss_3:https://www.bilibili.com/video/BV1rx41157WQ/?spm_id_from=333.788

2020-09-25 10:06:35 197

原创 机器学习讲堂:分析核函数的原理

https://www.youtube.com/watch?v=p4t6O9uRX-U&list=PLt0SBi1p7xrRKE2us8doqryRou6eDYEOy&index=1 转载自李政轩老师系列视频一步一步带你分析核函数的原理-Kernel Method

2020-09-25 10:05:12 97

转载 weight-decay与L2正则化差异

最近在看其他量化训练的一些代码、论文等,不经意间注意到有人建议要关注weight decay值的设置,建议设置为1e-4, 不要设置为1e-5这么小,当然,这个值最好还是在当下的训练任务上调一调。因为weight-decay 可以使参数尽可能地小,尽可能地紧凑,那这样权重的数值就不太可能出现若干个极端数值(偏离权重均值过大或过小)导致数值区间过大,这样求得的scale=(b-a)/255 会偏大,导致的结果就是大量数值较为接近的浮点数被量化到同一个数,严重损失了精度。关于weight-decay需.

2020-09-22 14:03:17 216 1

转载 Pytorch:transforms的二十二个方法

文章目录一、 裁剪——Crop 1.随机裁剪:transforms.RandomCrop 2.中心裁剪:transforms.CenterCrop 3.随机长宽比裁剪 transforms.RandomResizedCrop 4.上下左右中心裁剪:transforms.FiveCrop 5.上下左右中心裁剪后翻转: transforms.TenCrop 二、翻转和旋转——Flip and Rotation 6.依概率p水平翻转transforms.RandomHoriz

2020-09-22 10:46:58 123

inception_resnet_v2_2016_08_30预训练模型

用于深度学习inception_resnet_v2网络的预训练模型ckpt文件。

2018-08-11

Xshell无法启动破解补丁

Xshell无法启动破解补丁:要继续使用此程序,您必须应用最新的更新或使用新版本。使用此补丁替换:复制此nslicense.dll替换源目录文件

2019-09-12

baidu_google_bing自动化图像爬虫脚本

用于深度学习图像数据集的构建,win端自动化图像爬虫程序。

2018-08-11

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除